ATRank: An Attention-Based User Behavior Modeling Framework for Recommendation

ATRank模型针对异构用户行为,利用自注意力机制建模用户行为,将行为投影到多维语义空间中进行交互。通过与BPR-MF, Bi-LSTM, Bi-LSTM+Attention等算法对比实验,展示了在单一类型和多类型行为数据集上的优秀性能。" 89397814,8256439,GSAP:专业Web动画库详解,"['JavaScript', '动画库']
摘要由CSDN通过智能技术生成

在这里插入图片描述

Abstract

在这里插入图片描述

异构用户行为

我们的模型考虑了【异构用户行为】,我们将所有类型的行为投射到多个潜在的语义空间中,在这些语义空间中,行为之间可以通过自关注产生影响。

异构用户行为(Heterogeneous User Behavior)指的是在一个系统、平台或社交网络中,不同用户在行为模式、兴趣爱好、互动方式等方面存在差异的现象。这种差异可能来自于用户个体的特征、偏好、社会背景、文化等因素,导致他们在使用该系统或平台时表现出多样化的行为。

在各种互联网和社交媒体平台中,异构用户行为是常见的现象。不同用户可能会以不同的方式与平台进行互动,例如:

  1. 浏览模式不同: 一些用户可能更喜欢浏览图像、视频,而另一些用户可能更喜欢阅读文字内容。

  2. 互动频率差异

bi-vldoc是一种用于视觉丰富文档的双向视觉-语言建模方法。 bi-vldoc通过将视觉信息与语言信息结合起来,能够有效地处理视觉丰富的文档。传统的自然语言处理方法通常只处理文本信息,忽视了文档中的视觉元素。而bi-vldoc能够同时考虑文本和图像,并将它们作为输入进行建模,从而更全面地理解和分析文档内容。 bi-vldoc的关键思想是利用双向建模技术。它使用了两个模型:一个是基于视觉的模型,另一个是基于语言的模型。这两个模型相互配合,通过互相补充的方式提高了整体的建模效果。 基于视觉的模型主要用于从图像中提取视觉特征,并将其编码为向量表示。这些向量表示包含了图像的语义信息,能够用于理解图像中的内容。 基于语言的模型主要用于处理文本信息。它能够将文本编码为向量表示,并用于生成关于文本的预测。 在训练时,bi-vldoc使用了大量的带有标注的视觉丰富文档数据集。通过最大化真实标注的概率来训练模型,使其能够根据给定的文档内容生成正确的视觉和语言输出。 bi-vldoc在实际应用中具有广泛的应用前景。例如,在图像描述生成中,它可以根据图像内容生成相关的文本描述。在问答系统中,它可以回答关于图像内容的问题。此外,bi-vldoc还可以应用于文档分类、信息检索等领域,提供更准确和全面的分析和理解能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值