【转载】JoSE:球面上的词向量和句向量

【转载】JoSE:球面上的词向量和句向量

本文转载自科学空间 Blog:

苏剑林. (Nov. 11, 2019). 《JoSE:球面上的词向量和句向量 》[Blog post].

这篇文章介绍一个发表在NeurIPS 2019的做词向量和句向量的模型JoSE(Joint Spherical Embedding),论文名字是《Spherical Text Embedding》。JoSE模型思想上和方法上传承自Doc2Vec,评测结果更加漂亮,但写作有点故弄玄虚之感。不过笔者决定写这篇文章,是因为觉得里边的某些分析过程有点意思,可能会对一般的优化问题都有些参考价值。

优化目标

在思想上,这篇文章基本上跟Doc2Vec是一致的:为了训练句向量,把句子用一个id表示,然后把它也当作一个词,跟句内所有的词都共现,最后训练一个Skip Gram模型,训练的方式都是基于负采样的。跟Doc2Vec不一样的是,JoSE将全体向量的模长都归一化了(也就是只考虑单位球面上的向量),然后训练目标没有用交叉熵,而是用hinge loss:

max ⁡ ( 0 , m − cos ⁡ ( u , v ) − cos ⁡ ( u , d ) + cos ⁡ ( u ′ , v ) + cos ⁡ ( u ′ , d ) ( 1 ) \max(0, m - \cos(\boldsymbol{u}, \boldsymbol{v}) - \cos(\boldsymbol{u}, \boldsymbol{d}) + \cos(\boldsymbol{u}', \boldsymbol{v}) + \cos(\boldsymbol{u}', \boldsymbol{d})\quad(1) max(0,mcos(u,v)cos(u,d)+cos(u,v)+cos(u,d)(1)

其中 u u u是“中心词”的词向量, v v v是“上下文词”的词向量,它们分别来自两套词向量空间, d d d则是当前句的句向量,而 u ′ u^\prime u负采样得到的“中心词”词向量,最后的 m m m是一个常数。以前做相似度模型的读者应该能很轻松读懂这个优化目标的含义,它就是希望句子内的“词-词-句”打分 cos ⁡ ( u , v ) + cos ⁡ ( u , d ) \cos(u,v)+\cos(u,d) cos(u,v)+cos(u,d)要高于“词-随机词-句”打分 cos ⁡ ( u ′ , v ) + cos ⁡ ( u ′ , d ) \cos(u′,v)+\cos(u′,d) cos(u,v)+cos(u,d),但不需要太高,只要高出 m m m就行了。

假定 u , v , d u,v,d u,v,d都已经归一化的情况下,那么目标(1)就是(每个向量被假设为列向):

max ⁡ ( 0 , m − v ⊤ u − d ⊤ u + v ⊤ u ′ + d ⊤ u ′ ) ( 2 ) \max(0, m - \boldsymbol{v}^{\top}\boldsymbol{u} - \boldsymbol{d}^{\top}\boldsymbol{u} + \boldsymbol{v}^{\top} \boldsymbol{u}' + \boldsymbol{d}^{\top} \boldsymbol{u}')\quad(2) max(0,mvudu+vu+du)(2)

梯度下降

目标(1)或(2)其实并没有什么新鲜之处,跟大多数词向量的目标类似,都是用内积衡量词的相关性,只不过这里的向量归一化过,所以内积就是 cos ⁡ \cos cos,至于hinge loss和交叉熵孰优孰劣,我倒觉得不会有什么太大差别。

事实上,笔者觉得文章比较有意思的是它后面对梯度的几何分析,在这里笔者用自己的话重复一下求解过程。设 x x x是全体 u , v , d u,v,d u,v,d向量中的其中一个,然后假设现在固定所有的其他向量,只优化 x x x,设总的loss为 f ( x ) f(x) f(x),那这个优化过程有两种描述方式:

arg ⁡ min ⁡ x ,   ∥ x ∥ = 1 f ( x ) 或 arg ⁡ min ⁡ θ f ( θ ∥ θ ∥ ) ( 3 ) \mathop{\arg\min}_{\boldsymbol{x},\,\Vert\boldsymbol{x}\Vert=1} f(\boldsymbol{x})\quad\text{或}\quad \mathop{\arg\min}_{\boldsymbol{\theta}} f\left(\frac{\boldsymbol{\theta}}{\Vert \boldsymbol{\theta}\Vert}\right) \quad(3) argminx,x=1f(x)argminθf(θθ)(3)

也就是说,我们可以将这个问题理解为带有约束 ∥ x ∥ = 1 ∥x∥=1 x=1 f ( x ) f(x) f(x)最小化问题,也可以通过设x=θ/∥θ∥x=θ/‖θ‖将它转化为无约束的 f ( θ ‖ θ ‖ ) f(\frac{θ}{‖θ‖}) f(θθ)最小化问题。由于带约束的优化问题我们不熟悉,所以只好按照后一种方式来理解。

复杂模型不同的是,词向量算是一个比较简单的模型,所以我们最好手动求出它的梯度形式,然后编写对应函数进行梯度下降来优化,而不借助于一些自动求导工具。对于 f ( θ ∥ θ ∥ ) f(\frac{θ}{\|θ\|}) f(θθ),我们不难求得:

∇ θ   f ( θ ∥ θ ∥ ) = 1 ∥ θ ∥ ( I − x x ⊤ ) ∇ x   f ( x ) ( 4 ) \nabla_{\boldsymbol{\theta}}\,f\left(\frac{\boldsymbol{\theta}}{\Vert \boldsymbol{\theta}\Vert}\right) = \frac{1}{\Vert\boldsymbol{\theta}\Vert}\left(\boldsymbol{I} - \boldsymbol{x}\boldsymbol{x}^{\top}\right)\nabla_{\boldsymbol{x}}\,f\left(\boldsymbol{x}\right) \quad(4) θf(θθ)=θ1(Ixx)xf(x)(4)

(详细过程为 ∇ θ   f ( θ ∥ θ ∥ ) = ∇ x f ( x ) ⋅ ∇ θ ( θ ∥ θ ∥ ) = ∇ x f ( x ) ⋅ I ⋅ ∥ θ ∥ − θ ∥ θ ∥ ⋅ θ ⊤ ∥ θ ∥ 2 = 1 ∥ θ ∥ ( I − x x ⊤ ) ⋅ ∇ x f ( x ) \nabla_{\boldsymbol{\theta}}\,f\left(\frac{\boldsymbol{\theta}}{\Vert \boldsymbol{\theta}\Vert}\right) =\nabla_{x}f(x)\cdot\nabla_{\theta}({\frac{\theta}{\|\theta\|}})=\nabla_{x}f(x)\cdot\frac{I\cdot\|\theta\|-\frac{\theta}{\|\theta\|}\cdot\theta^{\top}}{\|\theta\|^2}=\frac{1}{\|\theta\|}(I-xx{\top})\cdot \nabla_{x}f(x) θf(θθ)=xf(x)θ(θθ)=xf(x)θ2Iθθθθ=θ1(Ixx)xf(x),其中 ( ∥ θ ∥ ) ′ = θ ∥ θ ∥ (\|\theta\|)^{\prime}=\frac{\theta}{\|\theta\|} (θ)=θθ,看作标量 ( θ 1 2 + θ 2 2 + ⋯ + θ n 2 ) ′ = θ i θ 1 2 + θ 2 2 + ⋯ + θ n 2 (\sqrt{\theta_1^2+\theta_2^2+\cdots+\theta_n^2})^{\prime}=\frac{\theta_i}{\sqrt{\theta_1^2+\theta_2^2+\cdots+\theta_n^2}} (θ12+θ22++θn2 )=θ12+θ22++θn2 θi

根据上述结果,梯度下降的迭代公式为:

θ t + 1 = θ t − η t ( I − x t x t ⊤ ) ∇ x t   f ( x t ) ( 5 ) \boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_{t} - \eta_t\left(\boldsymbol{I} - \boldsymbol{x}_t\boldsymbol{x}_t^{\top}\right)\nabla_{\boldsymbol{x}_t}\,f\left(\boldsymbol{x}_t\right) \quad(5) θt+1=θtηt(Ixtxt)xtf(xt)(5)

其中 η t \eta_t ηt是当前时刻的学习率,而因 1 ‖ θ ‖ \frac{1}{‖θ‖} θ1由于只是个标量,所以被整合到学习率中了。然后我们也可以写出:

x t + 1 = θ t + 1 ∥ θ t + 1 ∥ = θ t − η t ( I − x t x t ⊤ ) ∇ x t   f ( x t ) ∥ θ t − η t ( I − x t x t ⊤ ) ∇ x t   f ( x t ) ∥ = x t − η t / ∥ θ ∥ × ( I − x t x t ⊤ ) ∇ x t   f ( x t ) ∥ x t − η t / ∥ θ ∥ × ( I − x t x t ⊤ ) ∇ x t   f ( x t ) ∥ ( 6 ) \begin{aligned}\boldsymbol{x}_{t+1} = \frac{\boldsymbol{\theta}_{t+1}}{\Vert \boldsymbol{\theta}_{t+1}\Vert} =& \frac{\boldsymbol{\theta}_{t} - \eta_t\left(\boldsymbol{I} - \boldsymbol{x}_t\boldsymbol{x}_t^{\top}\right)\nabla_{\boldsymbol{x}_t}\,f\left(\boldsymbol{x}_t\right)}{\left\Vert \boldsymbol{\theta}_{t} - \eta_t\left(\boldsymbol{I} - \boldsymbol{x}_t\boldsymbol{x}_t^{\top}\right)\nabla_{\boldsymbol{x}_t}\,f\left(\boldsymbol{x}_t\right)\right\Vert}\\ =& \frac{\boldsymbol{x}_{t} - \eta_t/\Vert\boldsymbol{\theta}\Vert\times\left(\boldsymbol{I} - \boldsymbol{x}_t\boldsymbol{x}_t^{\top}\right)\nabla_{\boldsymbol{x}_t}\,f\left(\boldsymbol{x}_t\right)}{\left\Vert \boldsymbol{x}_{t} - \eta_t/\Vert\boldsymbol{\theta}\Vert\times\left(\boldsymbol{I} - \boldsymbol{x}_t\boldsymbol{x}_t^{\top}\right)\nabla_{\boldsymbol{x}_t}\,f\left(\boldsymbol{x}_t\right)\right\Vert} \end{aligned}\quad(6) xt+1=θt+1θt+1==θtηt(Ixtxt)xtf(xt)θtηt(Ixtxt)xtf(xt)xtηt/θ×(Ixtxt)xtf(xt)xtηt/θ×(Ixtxt)xtf(xt)(6)

再次将 1 ∥ θ ∥ \frac{1}{\|\theta\|} θ1整合到学习率中,将得到只有 x t x_t xt的更新公式:

x t + 1 = x t − η t ( I − x t x t ⊤ ) ∇ x t   f ( x t ) ∥ x t − η t ( I − x t x t ⊤ ) ∇ x t   f ( x t ) ∥ ( 7 ) \boldsymbol{x}_{t+1} = \frac{\boldsymbol{x}_{t} - \eta_t\left(\boldsymbol{I} - \boldsymbol{x}_t\boldsymbol{x}_t^{\top}\right)\nabla_{\boldsymbol{x}_t}\,f\left(\boldsymbol{x}_t\right)}{\left\Vert \boldsymbol{x}_{t} - \eta_t\left(\boldsymbol{I} - \boldsymbol{x}_t\boldsymbol{x}_t^{\top}\right)\nabla_{\boldsymbol{x}_t}\,f\left(\boldsymbol{x}_t\right)\right\Vert}\quad(7) xt+1=xtηt(Ixtxt)xtf(xt)xtηt(Ixtxt)xtf(xt)(7)

更新量的修正

对下降的梯度进行如下变换,首先有:

g = ( I − x t x t ⊤ ) ∇ x t   f ( x t ) = ∇ x t   f ( x t ) − x t x t ⊤ ∇ x t   f ( x t ) = ∇ x t   f ( x t ) − x t ∥ ∇ x t   f ( x t ) ∥ cos ⁡ ( x t , ∇ x t   f ( x t ) ) (由 ∥ x t ∥ = 1 保证) ( 8 ) \begin{aligned}\boldsymbol{g}=&\left(\boldsymbol{I} - \boldsymbol{x}_t\boldsymbol{x}_t^{\top}\right)\nabla_{\boldsymbol{x}_t}\,f\left(\boldsymbol{x}_t\right)\\ =&\nabla_{\boldsymbol{x}_t}\,f\left(\boldsymbol{x}_t\right) - \boldsymbol{x}_t\boldsymbol{x}_t^{\top}\nabla_{\boldsymbol{x}_t}\,f\left(\boldsymbol{x}_t\right)\\ =&\nabla_{\boldsymbol{x}_t}\,f\left(\boldsymbol{x}_t\right) - \boldsymbol{x}_t\Vert \nabla_{\boldsymbol{x}_t}\,f\left(\boldsymbol{x}_t\right)\Vert \cos\left(\boldsymbol{x}_t,\nabla_{\boldsymbol{x}_t}\,f\left(\boldsymbol{x}_t\right)\right) \text{(由}\|x_t\|=1 \text{保证)} \end{aligned} \quad(8) g===(Ixtxt)xtf(xt)xtf(xt)xtxtxtf(xt)xtf(xt)xtxtf(xt)cos(xt,xtf(xt))(由xt=1保证)(8)

可以看到, x t x t ⊤ ∇ x t f ( x t ) x_tx_t^{\top}\nabla_{x_t}f(x_t) xtxtxtf(xt)实际上就是向量 ∇ x t f ( x t ) \nabla_{x_t}f(x_t) xtf(xt) 在 在 x t x_t xt方向上的投影分量,而整个 g g g其实就是一个与 x t x_t xt垂直的向量,如下图示:

梯度的几何图示

在上图中,红色向量代表 x t x_t xt,蓝色向量代表 ∇ x t f ( x t ) \nabla_{x_t}f(x_t) xtf(xt),如果没有 ∥ x t ∥ = 1 \|x_t\|=1 xt=1的约束的话,更向量将直接由 ∇ x t f ( x t ) \nabla_{x_t}f(x_t) xtf(xt)决定,但是因为有了约束,所以更新量由 g = ( I − x t x t ⊤ ∇ x t f ( x t ) ) g=(I-x_tx_t^{\top}\nabla_{x_t}f(x_t)) g=(Ixtxtxtf(xt))决定。然而,有下面两种不同的 ∇ x t f ( x t ) \nabla_{x_t}f(x_t) xtf(xt),都可能导致同一个 g g g

第一种情况,∇xf(x)跟x的方向很靠近

第二种情况,∇xf(x)跟x的方向几乎相反

第一种情况的 ∇ x t f ( x t ) \nabla_{x_t}f(x_t) xtf(xt)的方向跟 x t x_t xt很靠近,第二种情况则相反,但它们的 g g g是一致的。前面说了,如果没有约束的话, ∇ x t f ( x t ) \nabla_{x_t}f(x_t) xtf(xt)才是梯度,换言之 − ∇ x t f ( x t ) -\nabla_{x_t}f(x_t) xtf(xt)就是合理的更新方向;现在有了约束, − ∇ x t f ( x t ) -\nabla_{x_t}f(x_t) xtf(xt)虽然不能指出最合理的梯度方向,但直觉来看,它应该还是跟更新量有关的。

在第一种情况下, − ∇ x t f ( x t ) -\nabla_{x_t}f(x_t) xtf(xt) x t x_t xt方向差得比较远,意味着这种情况下更新量应该大一些;而第二种情况下, − ∇ x t f ( x t ) -\nabla_{x_t}f(x_t) xtf(xt) x t x_t xt方向比较一致,而我们只关心 x t + 1 x_{t+1} xt+1的方向,不关心它的模长,所以按理说这种情况下更新量应该小一些。

所以,哪怕这两种情况下 g g g都一样,我们还是需要有所区分,一个很自然的想法是:既然 − ∇ x t f ( x t ) -\nabla_{x_t}f(x_t) xtf(xt) x t x_t xt的方向的一致性会对更新量的大小有所影响,所以不妨用

1 − cos ⁡ ( − ∇ x t   f ( x t ) , x t ) = 1 + x t ⊤ ∇ x t   f ( x t ) ∥ ∇ x t   f ( x t ) ∥ ( 9 ) 1-\cos(-\nabla_{\boldsymbol{x}_t}\,f\left(\boldsymbol{x}_t\right),\boldsymbol{x}_t)=1+\frac{\boldsymbol{x}_t^{\top}\nabla_{\boldsymbol{x}_t}\,f\left(\boldsymbol{x}_t\right)}{\left\Vert \nabla_{\boldsymbol{x}_t}\,f\left(\boldsymbol{x}_t\right)\right\Vert} \quad(9) 1cos(xtf(xt),xt)=1+xtf(xt)xtxtf(xt)(9)

来调节更新量,这个调节因子刚好满足“方向越一致,调节因子越小”的特性。自然就形成了最终的更新公式

方向越一致,cos值越大,-cos值越小,调节因子小

x t + 1 = x t − η t ( 1 + x t ⊤ ∇ x t   f ( x t ) ∥ ∇ x t   f ( x t ) ∥ ) ( I − x t x t ⊤ ) ∇ x t   f ( x t ) ∥ x t − η t ( 1 + x t ⊤ ∇ x t   f ( x t ) ∥ ∇ x t   f ( x t ) ∥ ) ( I − x t x t ⊤ ) ∇ x t   f ( x t ) ∥ ( 10 ) \boldsymbol{x}_{t+1} = \frac{\boldsymbol{x}_{t} - \eta_t\left(1+\frac{\boldsymbol{x}_t^{\top}\nabla_{\boldsymbol{x}_t}\,f\left(\boldsymbol{x}_t\right)}{\left\Vert \nabla_{\boldsymbol{x}_t}\,f\left(\boldsymbol{x}_t\right)\right\Vert}\right)\left(\boldsymbol{I} - \boldsymbol{x}_t\boldsymbol{x}_t^{\top}\right)\nabla_{\boldsymbol{x}_t}\,f\left(\boldsymbol{x}_t\right)}{\left\Vert \boldsymbol{x}_{t} - \eta_t\left(1+\frac{\boldsymbol{x}_t^{\top}\nabla_{\boldsymbol{x}_t}\,f\left(\boldsymbol{x}_t\right)}{\left\Vert \nabla_{\boldsymbol{x}_t}\,f\left(\boldsymbol{x}_t\right)\right\Vert}\right)\left(\boldsymbol{I} - \boldsymbol{x}_t\boldsymbol{x}_t^{\top}\right)\nabla_{\boldsymbol{x}_t}\,f\left(\boldsymbol{x}_t\right)\right\Vert}\quad(10) xt+1=xtηt(1+xtf(xt)xtxtf(xt))(Ixtxt)xtf(xt)xtηt(1+xtf(xt)xtxtf(xt))(Ixtxt)xtf(xt)(10)

故弄玄虚

有意思的地方讲完了,下面讲一下没有意思的地方了。对NLP有稍微深入一点了解的读者(看过Word2Vec的数学原理,推导过常规模型的梯度)应该会觉得,上面前两节内容并没有什么很深奥的内容,第三节的几何解释和学习率调节有点新颖,但也是有迹可循的内容。不过要是去看原论文的话,那感觉可能就完全不一样了,作者用“概率分布”、“黎曼流形上的优化”等语言,把上述本该比较容易理解的内容,描述得让人云里雾里,深有故弄玄虚之感。

首先,我最不理解的一点是,作者在一开始就做了一个不合理的假设(将词向量连续化),然后花了不少篇幅来论证 p ( v ∣ u ) ∼ e cos ⁡ ( v , u ) p(v|u)∼e^{\cos(v,u)} p(vu)ecos(v,u) p ( u ∣ d ) ∼ e cos ⁡ ( u , d ) p(u|d)∼e^{\cos(u,d}) p(ud)ecos(u,d)对应着Von Mises–Fisher分布。然后呢?就没有然后了,后面的所有内容跟这个Von Mises–Fisher分布可以说没有半点关系,所以不理解作者写这部分内容的目的是什么。

接着,在优化那部分,作者说带约束 ‖ x ‖ = 1 ‖x‖=1 x=1 f ( x ) f(x) f(x)最小化问题不能用梯度下降,所以只能用“黎曼梯度下降”,然后就开始“炫技”了:先说说黎曼流形,然后给出一般的指数映射,再然后给出黎曼梯度,一波高端操作下来,最后却只保留了一个大家都能懂的方案: x = θ ‖ θ ‖ x=\frac{θ}{‖θ‖} x=θθ。这时我就很“服气”了,虽然作者的逻辑和推导都没有毛病,但是一波操作下来最后却给看众一个 x = θ ‖ θ ‖ x=\frac{θ}{‖θ‖} x=θθ的朴素结果,那为什么不一开始就直接讨论 f ( x = θ ‖ θ ‖ ) f(x=\frac{θ}{‖θ‖}) f(x=θθ)的优化呢?非得要去黎曼流形上面把普通读者绕晕?

此外,我说的比较有意思的部分,就是更新量的几何解释以及得到的调节因子,作者也说得挺迷糊的。总之,笔者认为,论文的理论推导部分,很多地方都充斥着很多不必要的专业术语,无端加深了普通看众的理解难度。

最后强调一下,笔者从来不反对“一题多解”,也不反对将简单的内容深化、抽象化,因为“深化”、“抽象化”确实也可能获得更全面的认识,或者能显示各个分支之间的联系。但是这种“深化”、“抽象化”应该要建立在一个大多数人都能理解的简单解的基础上进行的,而不是为了“深化”、“抽象化”而特意舍去了大多数人能理解的简单解。

实验结果

吐槽归吐槽,在实验部分,JoSE做得还是很不错的。首先给出了JoSE的高效的C语言实现:

Github:https://github.com/yumeng5/Spherical-Text-Embedding

我试用了一下,训练确实很快速,训练好的词/句向量结果可以用gensim的KeyedVectors加载。另外我还看了一下源代码,很简练清晰,也方便做二次修改。

至于实验结果,论文给出的词/句向量评测上面,JoSE也是比较领先的:

词相似度评测

词相似度评测

文章总结

本文分享了一个发表在NeurIPS 2019的文本向量模型JoSE,着重讲了一下笔者觉得有启发性的部分,并用自己的方法给出了推导过程。JoSE可以认为是Doc2Vec的自然变种,在细微之处做了调整,并且在优化方法上提出了作者自己的见解,除却一些疑似故弄玄虚的地方之外,还不失为一个可圈可点的工作。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值