线性代数
文章平均质量分 84
jonvi_
随便记录下学习的日子
展开
-
证明A^T*A的二范数等于A*A^T的二范数
证明A^T*A的二范数等于A*A^T的二范数原创 2023-12-21 20:47:43 · 1048 阅读 · 0 评论 -
证明矩阵A^T的二范数与矩阵A的二范数相等
证明转置矩阵的二范数与原矩阵的二范数相等原创 2023-03-07 11:11:43 · 1996 阅读 · 2 评论 -
证明矩阵A二范数的平方等于A^T*A的二范数
证明矩阵二范数的平方等于转置矩阵与原矩阵相乘后的二范数原创 2023-03-07 17:36:27 · 4698 阅读 · 0 评论 -
证明维度定理
证明维度定理定理描述:如果n维向量集a1,a2,...,aka_1,a_2,...,a_ka1,a2,...,ak是线性无关的,则有k⩽nk\leqslant nk⩽n.证明:利用数学归纳法来证明:当 n=1n=1n=1 时:假设有1维的向量集a1,a2,...,aka_1,a_2,...,a_ka1,a2,...,ak是线性无关的,则必有ai≠0a_i\neq 0ai=0。这时就会得到ai=(aia1)∗a1a_i= \left(\frac{a_i}{a_1}\right)原创 2021-01-21 22:15:23 · 1206 阅读 · 2 评论 -
证明矩阵的秩=行秩=列秩
文章目录一、部分概念的定义二、概念间的联系三、定理的推导与证明一、部分概念的定义维数:一个向量空间VVV的基所含向量的个数叫做VVV的维数极大线性无关组:若向量组{α1,α2,…,αn}\{\alpha_1,\alpha_2,\ldots,\alpha_n\}{α1,α2,…,αn}的一个部分向量组{αi1,αi1,…,αir}\{\alpha_{i_1},\alpha_{i_1},\ldots,\alpha_{i_r}\}{αi1,αi1,…,αir}被称为一个极大线性无关原创 2021-11-23 22:51:13 · 9002 阅读 · 0 评论