证明维度定理

定理描述:

如果 n n n维向量集 a 1 , a 2 , . . . , a k a_1,a_2,...,a_k a1,a2,...,ak是线性无关的,则有 k ⩽ n k\leqslant n kn.

证明:

利用数学归纳法来证明:

  • n = 1 n=1 n=1 时:
    假设有1维的向量集 a 1 , a 2 , . . . , a k a_1,a_2,...,a_k a1,a2,...,ak是线性无关的,则必有 a i ≠ 0 a_i\neq 0 ai=0。这时就会得到 a i = ( a i a 1 ) ∗ a 1 a_i= \left(\frac{a_i}{a_1}\right)*a_1 ai=(a1ai)a1,所以 k = 1 k=1 k=1是必然的,否则就与 a 1 , a 2 , . . . , a k a_1,a_2,...,a_k a1,a2,...,ak是线性无关这个假设矛盾。故当 n = 1 n=1 n=1时结论成立。
  • n ⩾ 2 n\geqslant 2 n2 时:
    假设 n − 1 n-1 n1 维时结论成立。
    此时假设有 n n n维的向量集 a 1 , a 2 , . . . , a k a_1,a_2,...,a_k a1,a2,...,ak是线性无关的,这里只需要证明 k ⩽ n k\leqslant n kn则结论得证。
    首先把每个向量分成两块:
    a i = [ b i α i ] , i = 1 , 2 , . . . , k a_i=\left[\begin{matrix} b_i \\ \alpha_i \end{matrix} \right],i=1,2,...,k ai=[biαi]i=1,2,...,k
    其中 b i b_i bi是一个 n − 1 n-1 n1维的向量而 α i \alpha_i αi是个标量。
    接下来分成两步来证明.
    • 首先假设 α 1 = ⋯ = α k = 0 \alpha_1=\cdots=\alpha_k=0 α1==αk=0.
      紧接着假设存在 β 1 , β 2 , . . . , β k \beta_1,\beta_2,...,\beta_k β1,β2,...,βk使得 ∑ i = 1 k β i a i = 0 \sum_{i=1}^k\beta_ia_i=0 i=1kβiai=0,也即等价于使得 ∑ i = 1 k β i b i = 0 \sum_{i=1}^k\beta_ib_i=0 i=1kβibi=0。由于 b 1 , b 2 , . . . , b k b_1,b_2,...,b_k b1,b2,...,bk n − 1 n-1 n1维的向量,而 n − 1 n-1 n1维时定理是成立的,故此时有 k ⩽ n − 1 k\leqslant n-1 kn1,也即 k ⩽ n k\leqslant n kn,所以定理得证。
    • 接下来假设 α i , ⋯   , α k \alpha_i,\cdots,\alpha_k αi,,αk不全为0.
      假设 α j ≠ 0 \alpha_j\neq 0 αj=0,定义 k − 1 k-1 k1 n − 1 n-1 n1维向量集:
      c i = b i − α i α j b j , i = 1 , . . . , j − 1 c_i=b_i-\frac{\alpha_i}{\alpha_j}b_j,i=1,...,j-1 ci=biαjαibj,i=1,...,j1 c i = b i − α i + 1 α j b j , i = j , . . . , k − 1 c_i=b_i-\frac{\alpha_{i+1}}{\alpha_j}b_j,i=j,...,k-1 ci=biαjαi+1bj,i=j,...,k1
      假设存在 β 1 , β 2 , . . . , β k − 1 \beta_1,\beta_2,...,\beta_{k-1} β1,β2,...,βk1使得 ∑ i = 1 k − 1 β i c i = 0 \sum_{i=1}^{k-1}\beta_ic_i=0 i=1k1βici=0,也即代表有如下等式成立:
      ∑ i = 1 j − 1 β i [ b i α i ] − 1 α j ( ∑ i = 1 j − 1 β i α i + ∑ i = j + 1 k β i − 1 α i ) [ b j α j ] + ∑ i = j + 1 k β i − 1 [ b i α i ] = 0 \sum_{i=1}^{j-1}\beta_i \left[\begin{matrix} b_i \\ \alpha_i \end{matrix} \right] -\frac{1}{\alpha_j}(\sum_{i=1}^{j-1}\beta_i\alpha_i+\sum_{i=j+1}^{k}\beta_{i-1}\alpha_i) \left[\begin{matrix} b_j\\ \alpha_j \end{matrix} \right]+ \sum_{i=j+1}^{k}\beta_{i-1} \left[\begin{matrix} b_i \\ \alpha_i \end{matrix} \right]=0 i=1j1βi[biαi]αj1(i=1j1βiαi+i=j+1kβi1αi)[bjαj]+i=j+1kβi1[biαi]=0
      γ = − 1 α j ( ∑ i = 1 j − 1 β i α i + ∑ i = j + 1 k β i − 1 α i ) \gamma=-\frac{1}{\alpha_j}(\sum_{i=1}^{j-1}\beta_i\alpha_i+\sum_{i=j+1}^{k}\beta_{i-1}\alpha_i) γ=αj1(i=1j1βiαi+i=j+1kβi1αi),那么上式可以简化为:
      ∑ i = 1 j − 1 β i [ b i α i ] + γ [ b j α j ] + ∑ i = j + 1 k β i − 1 [ b i α i ] = 0 \sum_{i=1}^{j-1}\beta_i \left[\begin{matrix} b_i \\ \alpha_i \end{matrix} \right] +\gamma \left[\begin{matrix} b_j\\ \alpha_j \end{matrix} \right]+ \sum_{i=j+1}^{k}\beta_{i-1} \left[\begin{matrix} b_i \\ \alpha_i \end{matrix} \right]=0 i=1j1βi[biαi]+γ[bjαj]+i=j+1kβi1[biαi]=0
      由于 a i = ( b i , α i ) a_i=(b_i,\alpha_i) ai=(bi,αi)是线性无关的,则 β i \beta_i βi γ \gamma γ均等于0,这也就意味着 c 1 , c 2 , . . . , c k − 1 c_1,c_2,...,c_{k-1} c1,c2,...,ck1 k − 1 k-1 k1 n − 1 n-1 n1维的向量是线性无关的,而 n − 1 n-1 n1维时定理是成立的,所以就有不等式 k − 1 ⩽ n − 1 k-1\leqslant n-1 k1n1,也即 k ⩽ n k\leqslant n kn.故 n n n维时定理也是成立的。
综上所述,如果n维向量集 a 1 , a 2 , . . . , a k a_1,a_2,...,a_k a1,a2,...,ak是线性无关的,则有 k ⩽ n k\leqslant n kn.定理得证!
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值