证明矩阵A^T的二范数与矩阵A的二范数相等

定理:

对于任意的矩阵 A ∈ R n × m A \in R^{n\times m} ARn×m,有 ∥ A ⊤ ∥ 2 = ∥ A ∥ 2 \left\|A^\top\right\|_2=\left\|A\right\|_2 A 2=A2

证明:

根据矩阵二范数的定义, ∥ A ∥ 2 = λ m a x ( A ⊤ A ) \left\|A\right\|_2=\sqrt{\lambda_{max}(A^\top A)} A2=λmax(AA) ,即矩阵 A A A的二范数等于最大奇异值。设单位矩阵为 I I I A ⊤ A A^\top A AA的一个特征值为 λ \lambda λ,以及该特征值对应的特征向量为 x x x,则有
A ⊤ A x = λ x . (1) A^\top Ax=\lambda x. \tag{1} AAx=λx.(1)
在公式(1)左右两侧乘上 A A A,则有
A A ⊤ ( A x ) = λ ( A x ) . (2) AA^\top (Ax)=\lambda (Ax). \tag{2} AA(Ax)=λ(Ax).(2)
公式(2)表明 A ⊤ A A^\top A AA的所有特征值都是 A A ⊤ A A^\top AA的特征值,因此 ∥ A ∥ 2 ≤ ∥ A ⊤ ∥ 2 \bm{\left\|A\right\|_2 \le \left\|A^\top\right\|_2} A2 A 2。类似地,可以得到 ∥ A ⊤ ∥ 2 ≤ ∥ A ∥ 2 \bm{\left\|A^\top\right\|_2 \le \left\|A\right\|_2} A 2A2。因此可得 ∥ A T ∥ 2 = ∥ A ∥ 2 \left\|A^T\right\|_2=\left\|A\right\|_2 AT 2=A2,定理得证。

PS:证明过程与这篇文章类似。

  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值