证明矩阵A二范数的平方等于A^T*A的二范数

定理:

对于任意的矩阵 A ∈ R n × m A \in R^{n\times m} ARn×m,有 ∥ A ∥ 2 2 = ∥ A T A ∥ 2 \left\|A\right\|_2^2=\left\|A^TA\right\|_2 A22= ATA 2

证明:

假设矩阵 A T A A^TA ATA最大特征值为 λ \lambda λ,即 ∥ A ∥ 2 2 = λ \left\|A\right\|_2^2=\lambda A22=λ,设 λ \lambda λ对应的特征向量为 x x x,则有:
A T A x = λ x A^TAx=\lambda x ATAx=λx同时可以得到以下等式:
( A T A ) A T A x = λ A T A x = λ 2 x (A^TA)A^TAx=\lambda A^TAx=\lambda ^2x (ATA)ATAx=λATAx=λ2x上式表明 λ 2 \lambda ^2 λ2同时是 ( A T A ) A T A (A^TA)A^TA (ATA)ATA的特征值,而根据上一篇文章,可以知道 ∥ A T A ∥ 2 ≤ ∥ A T ∥ 2 ∥ A ∥ 2 = ∥ A ∥ 2 2 = λ \left\|A^TA\right\|_2\le \left\|A^T\right\|_2\left\|A\right\|_2=\left\|A\right\|_2^2=\lambda ATA 2 AT 2A2=A22=λ,所以可知 ∥ A T A ∥ 2 = λ 2 = λ \left\|A^TA\right\|_2=\sqrt {{\lambda}^2} = \lambda ATA 2=λ2 =λ,故 ∥ A ∥ 2 2 = ∥ A T A ∥ 2 \left\|A\right\|_2^2=\left\|A^TA\right\|_2 A22= ATA 2成立,定理得证。

  • 6
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值