施瓦茨不等式(协方差和方差的关系)

证明施瓦茨不等式(协方差和方差的关系)

定理:

对于任意二维随机变量(X,Y),若X与Y的方差都存在,且记 σ x 2 = V a r ( X ) \sigma^2_x=Var(X) σx2=Var(X) σ Y 2 = V a r ( Y ) \sigma^2_Y=Var(Y) σY2=Var(Y),则有
[ C o v ( X , Y ) ] 2 ≤ σ x 2 σ Y 2 [Cov(X,Y)]^2 \leq \sigma^2_x \sigma^2_Y [Cov(X,Y)]2σx2σY2

证明:

∀ t ∈ R \forall t \in R tR,考虑二次函数:
g ( t ) = E [ t ( X − E X ) + ( Y − E Y ) ] 2 = E [ t 2 ( X − E X ) 2 + 2 t ( X − E X ) ( Y − E Y ) + ( Y − E Y ) 2 ] = t 2 E ( X − E X ) 2 + 2 t E [ ( X − E X ) ( Y − E Y ) ] + E ( Y − E Y ) 2 = t 2 σ x 2 + 2 t C o v ( X , Y ) + σ Y 2 \begin{aligned} g(t)& = E[t(X-EX) + (Y-EY)]^2 \\ & = E[t^2(X-EX)^2 + 2t(X-EX)(Y-EY) + (Y-EY)^2] \\ & = t^2E(X-EX)^2 + 2tE[(X-EX)(Y-EY)] + E(Y-EY)^2 \\ & = t^2\sigma^2_x + 2tCov(X,Y) + \sigma^2_Y \end{aligned} g(t)=E[t(XEX)+(YEY)]2=E[t2(XEX)2+2t(XEX)(YEY)+(YEY)2]=t2E(XEX)2+2tE[(XEX)(YEY)]+E(YEY)2=t2σx2+2tCov(X,Y)+σY2
根据期望的定义以及 [ t ( X − E X ) + ( Y − E Y ) ] 2 ≥ 0 [t(X-EX) + (Y-EY)]^2 \ge 0 [t(XEX)+(YEY)]20,可以得知 g ( t ) ≥ 0 g(t)\ge 0 g(t)0,所以根据二次函数的判别式就有
▽ = [ 2 C o v ( X , Y ) ] 2 − 4 σ X 2 σ Y 2 ≤ 0 \large \begin{aligned} \bigtriangledown = [2Cov(X,Y)]^2 - 4\sigma^2_X\sigma^2_Y \leq 0 \end{aligned} =[2Cov(X,Y)]24σX2σY20
​上面的不等式移项后即为结论中的施瓦茨不等式。

  • 5
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值