前言
由于本人近期正在展开数字图像相关技术用于测量材料形变方向的研究,其中需要对别人现有算法的复现和调研,尽管其中很多算法都已经非常成熟,但对于初学者而言即使明白其中的原理,无法上手实践和操作的话,依然无法能够将其完全的应用起来或者在上面进行创新,我希望能将自己作为一个初学者复现他人代码和学习该原理的过程记录下来,方便每一个涉足该领域的人能更快应用这些知识。
本文的论述基础建立在我的前一篇文章数字图像相关(Digital Image Correlation, DIC)中的非线性优化方法(FA-GN与IC-GN)。推荐先通过这篇帖子了解DIC非线性迭代优化方法后,再阅读本文。
数字图像相关专栏目录:
- Matlab实现二维数字图像相关(2D Digital Image Correlation, 2D-DIC)【ADIC2D代码复现及原理介绍】
- 数字图像相关(Digital Image Correlation, DIC)中的非线性优化方法(FA-GN与IC-GN)
- 数字图像相关(Digital Image Correlation, DIC)中的非线性优化方法IC-GN的数值解计算
- 用MATLAB绘制随机散斑图案【源码+正确的椭圆旋转公式】
由于本人的论文已经完工,如果本文对你有所帮助,欢迎届时关注或引用我的论文。
内容回顾
为保证阅读的通畅,我会将上一篇帖子中IC-GN的算法逻辑在本章节进行简要的回顾与展示,便于在后面的公式推导中方便随时回头查看。
形函数相关参数说明:
- 0阶形函数: W S F 0 ( Δ x i x 0 , P S F 0 ) = [ 1 0 u 0 1 v ] [ Δ x i Δ y i 1 ] \boldsymbol{W}^{S F 0}\left(\Delta \boldsymbol{x}^{i} \boldsymbol{x}^{0}, \boldsymbol{P}^{S F 0}\right)=\left[\begin{array}{ccc} 1 & 0 & u \\ 0 & 1 & v \end{array}\right]\left[\begin{array}{c} \Delta x_{i} \\ \Delta y_{i} \\ 1 \end{array}\right] WSF0(Δxix0,PSF0)=[1001uv]⎣⎡ΔxiΔyi1⎦⎤
- 1阶形函数: W S F 1 ( Δ x i x 0 , P S F 1 ) = [ 1 + u x u y u v x 1 + v y v ] [ Δ x i Δ y i 1 ] \boldsymbol{W}^{S F 1}\left(\Delta \boldsymbol{x}^{i} \boldsymbol{x}^{0}, \boldsymbol{P}^{S F 1}\right)=\left[\begin{array}{ccc} 1+u_{x} & u_{y} & u \\ v_{x} & 1+v_{y} & v \end{array}\right]\left[\begin{array}{c} \Delta x_{i} \\ \Delta y_{i} \\ 1 \end{array}\right] WSF1(Δxix0,PSF1)=[1+uxvxuy1+vyuv]⎣⎡ΔxiΔyi1⎦⎤
- 2阶形函数: W S F 2 ( Δ x i x 0 , P S F 2 ) = [ 1 2 u x x u x y 1 2 u y y 1 + u x u y u 1 2 v x x v x y 1 2 v y y v x 1 + v y v ] [ Δ x i 2 Δ x i Δ y i Δ y i 2 Δ x i Δ y i 1 ] \boldsymbol{W}^{S F 2}\left(\Delta \boldsymbol{x}^{i} \boldsymbol{x}^{0}, \boldsymbol{P}^{S F 2}\right)=\left[\begin{array}{cccccc} \frac{1}{2} u_{x x} & u_{x y} & \frac{1}{2} u_{y y} & 1+u_{x} & u_{y} & u \\ \frac{1}{2} v_{x x} & v_{x y} & \frac{1}{2} v_{y y} & v_{x} & 1+v_{y} & v \end{array}\right]\left[\begin{array}{c} \Delta x_{i}^{2} \\ \Delta x_{i} \Delta y_{i} \\ \Delta y_{i}^{2} \\ \Delta x_{i} \\ \Delta y_{i} \\ 1 \end{array}\right] WSF2(Δxix0,PSF2)=[21uxx21vxxuxyvxy21uyy21vyy1+uxvxuy1+vyuv]⎣⎢⎢⎢⎢⎢⎢⎡Δxi2ΔxiΔyiΔyi2ΔxiΔyi1⎦⎥⎥⎥⎥⎥⎥⎤
在上一文中我们详细推导了数字图像相关中的非线性迭代优化的算术逻辑:通过在参考图像上设置好子区 f i = F ( x o + Δ x i ) f_{i}=F\left(x^{o}+\Delta x_{i}\right) fi=F(xo+Δxi) ,基于给定的一组形函数参数初值 P r c 0 P_{rc}^{0} Prc0及 P r r 0 P_{rr}^{0} Prr0,对目标函数(相关标准)不断迭代优化从而得到一个在 P r r = 0 P_{rr}=0 Prr=0的情况下的最优解 P r c ∗ P_{rc}^{*} Prc∗,从而得到一组在形变图像上与参考子区最佳匹配的形变子区 g i ∗ = G ( x o + W ( Δ x i , P r c ∗ ) ) g_{i}^{*}=G\left(x^{o}+\boldsymbol{W}\left(\Delta \boldsymbol{x}_{i}, \boldsymbol{P_{rc}^{*}}\right)\right) g