数字图像相关(Digital Image Correlation, DIC)中的非线性优化方法IC-GN的数值解计算

本文介绍了数字图像相关(DIC)技术中,基于IC-GN(Incremental Correlation Gauss-Newton)的非线性优化方法的数值解计算过程。通过对形函数参数的迭代更新,利用ZNSSD(Zero-Normalized Sum of Squared Differences Criterion)标准,求解形函数参数增量ΔP,实现图像匹配。文章详述了梯度和Hessian的计算,并提供了不同阶数形函数的数值表达式,为MATLAB实现DIC算法提供指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

由于本人近期正在展开数字图像相关技术用于测量材料形变方向的研究,其中需要对别人现有算法的复现和调研,尽管其中很多算法都已经非常成熟,但对于初学者而言即使明白其中的原理,无法上手实践和操作的话,依然无法能够将其完全的应用起来或者在上面进行创新,我希望能将自己作为一个初学者复现他人代码和学习该原理的过程记录下来,方便每一个涉足该领域的人能更快应用这些知识。

本文的论述基础建立在我的前一篇文章数字图像相关(Digital Image Correlation, DIC)中的非线性优化方法(FA-GN与IC-GN)。推荐先通过这篇帖子了解DIC非线性迭代优化方法后,再阅读本文。

数字图像相关专栏目录:

  1. Matlab实现二维数字图像相关(2D Digital Image Correlation, 2D-DIC)【ADIC2D代码复现及原理介绍】
  2. 数字图像相关(Digital Image Correlation, DIC)中的非线性优化方法(FA-GN与IC-GN)
  3. 数字图像相关(Digital Image Correlation, DIC)中的非线性优化方法IC-GN的数值解计算
  4. 用MATLAB绘制随机散斑图案【源码+正确的椭圆旋转公式】

由于本人的论文已经完工,如果本文对你有所帮助,欢迎届时关注或引用我的论文。


内容回顾

为保证阅读的通畅,我会将上一篇帖子中IC-GN的算法逻辑在本章节进行简要的回顾与展示,便于在后面的公式推导中方便随时回头查看。
在这里插入图片描述
形函数相关参数说明:

  1. 0阶形函数 W S F 0 ( Δ x i x 0 , P S F 0 ) = [ 1 0 u 0 1 v ] [ Δ x i Δ y i 1 ] \boldsymbol{W}^{S F 0}\left(\Delta \boldsymbol{x}^{i} \boldsymbol{x}^{0}, \boldsymbol{P}^{S F 0}\right)=\left[\begin{array}{ccc} 1 & 0 & u \\ 0 & 1 & v \end{array}\right]\left[\begin{array}{c} \Delta x_{i} \\ \Delta y_{i} \\ 1 \end{array}\right] WSF0(Δxix0,PSF0)=[1001uv]ΔxiΔyi1
  2. 1阶形函数 W S F 1 ( Δ x i x 0 , P S F 1 ) = [ 1 + u x u y u v x 1 + v y v ] [ Δ x i Δ y i 1 ] \boldsymbol{W}^{S F 1}\left(\Delta \boldsymbol{x}^{i} \boldsymbol{x}^{0}, \boldsymbol{P}^{S F 1}\right)=\left[\begin{array}{ccc} 1+u_{x} & u_{y} & u \\ v_{x} & 1+v_{y} & v \end{array}\right]\left[\begin{array}{c} \Delta x_{i} \\ \Delta y_{i} \\ 1 \end{array}\right] WSF1(Δxix0,PSF1)=[1+uxvxuy1+vyuv]ΔxiΔyi1
  3. 2阶形函数 W S F 2 ( Δ x i x 0 , P S F 2 ) = [ 1 2 u x x u x y 1 2 u y y 1 + u x u y u 1 2 v x x v x y 1 2 v y y v x 1 + v y v ] [ Δ x i 2 Δ x i Δ y i Δ y i 2 Δ x i Δ y i 1 ] \boldsymbol{W}^{S F 2}\left(\Delta \boldsymbol{x}^{i} \boldsymbol{x}^{0}, \boldsymbol{P}^{S F 2}\right)=\left[\begin{array}{cccccc} \frac{1}{2} u_{x x} & u_{x y} & \frac{1}{2} u_{y y} & 1+u_{x} & u_{y} & u \\ \frac{1}{2} v_{x x} & v_{x y} & \frac{1}{2} v_{y y} & v_{x} & 1+v_{y} & v \end{array}\right]\left[\begin{array}{c} \Delta x_{i}^{2} \\ \Delta x_{i} \Delta y_{i} \\ \Delta y_{i}^{2} \\ \Delta x_{i} \\ \Delta y_{i} \\ 1 \end{array}\right] WSF2(Δxix0,PSF2)=[21uxx21vxxuxyvxy21uyy21vyy1+uxvxuy1+vyuv]Δxi2ΔxiΔyiΔyi2ΔxiΔyi1

在上一文中我们详细推导了数字图像相关中的非线性迭代优化的算术逻辑:通过在参考图像上设置好子区 f i = F ( x o + Δ x i ) f_{i}=F\left(x^{o}+\Delta x_{i}\right) fi=F(xo+Δxi) ,基于给定的一组形函数参数初值 P r c 0 P_{rc}^{0} Prc0 P r r 0 P_{rr}^{0} Prr0,对目标函数(相关标准)不断迭代优化从而得到一个在 P r r = 0 P_{rr}=0 Prr=0的情况下的最优解 P r c ∗ P_{rc}^{*} Prc,从而得到一组在形变图像上与参考子区最佳匹配的形变子区 g i ∗ = G ( x o + W ( Δ x i , P r c ∗ ) ) g_{i}^{*}=G\left(x^{o}+\boldsymbol{W}\left(\Delta \boldsymbol{x}_{i}, \boldsymbol{P_{rc}^{*}}\right)\right) g

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ViolentElder

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值