欢迎关注”生信修炼手册”!
numpy中数组的索引非常灵活且强大,基本的操作技巧有以下几种
1. 下标索引
通过每一轴的下标来访问元素,一次获取一个元素,用法如下
>>> import numpy
>>> a = numpy.arange(6)
>>> a
array([0, 1, 2, 3, 4, 5])
# 一维数组用法和python的列表对象一致
# 支持从0开始的正整数下标
# 也支持从-1开始的负整数下标
>>> a[2]
2
>>> a[-2]
4
# 二维数组,提供两个下标
>>> a = numpy.arange(9).reshape(3, -1)
>>> a
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
# 支持两种写法
# 两个中括号,第一个为行的下标,第二个为列的下标
# 一个中括号,两个下标用逗号分隔
>>> a[0][1]
1
>>> a[0, 1]
1
>>> a[0][-1]
2
>>> a[0, -1]
2
两个中括号的写法本质是分成了两步,第一步先根据第一个中括号中的下标提取对应的行,返回值为一个一维数组,第二步对第一步提取出的一维数组进行访问,因为产生了临时数组,效率会低一些。
2. 切片索引
切片索引通过切片的方式来提取子集,适用于数组内连续元素的提取,用法如下
>>> a = numpy.arange(6)
>>> a
array([0, 1, 2, 3, 4, 5])
# 一维数组用法和python的列表对象一致
>>> a[1:5]
array([1, 2, 3, 4])
>>> a[1:5:2]
array([1, 3])
>>> a[::2]
array([0, 2, 4])
# 整个数组
>>> a[::-1]
array([5, 4, 3, 2, 1, 0])
# 二维数组
>>> a = numpy.arange(9).reshape(3, -1)
>>> a
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
>>> a[1:3,1:2]
array([[4],
[7]])
# 一个冒号的简写表示提取全部的下标
# 一个省略号的简写表示提取全部的下标
# 提取第二行
>>> a[1, :]
array([3, 4, 5])
>>> a[1, ...]
array([3, 4, 5])
# 提取第二列
>>> a[:, 1]
array([1, 4, 7])
二维数组的切片不能用两个中括号的写法,因为切片的返回值和原始数组维度相同,第一步切片提取出来之后任然是二维数组
>>> a = numpy.arange(9).reshape(3, -1)
>>> a
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
>>> a[1:3]
array([[3, 4, 5],
[6, 7, 8]])
3. 花式索引
花式索引,本质是根据下标的集合,即索引数组来提取子集,与切片的区别在于,花式索引可以提