numpy中的索引技巧详解

本文介绍了numpy数组的四种索引技巧:下标索引、切片索引、花式索引和布尔索引,详细解析了每种索引方式的用法和返回值特性,帮助理解numpy中高效访问数组元素的方法。
摘要由CSDN通过智能技术生成

欢迎关注”生信修炼手册”!

numpy中数组的索引非常灵活且强大,基本的操作技巧有以下几种

1. 下标索引

通过每一轴的下标来访问元素,一次获取一个元素,用法如下

>>> import numpy
>>> a = numpy.arange(6)
>>> a
array([0, 1, 2, 3, 4, 5])
# 一维数组用法和python的列表对象一致
# 支持从0开始的正整数下标
# 也支持从-1开始的负整数下标
>>> a[2]
2
>>> a[-2]
4
# 二维数组,提供两个下标
>>> a = numpy.arange(9).reshape(3, -1)
>>> a
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
# 支持两种写法
# 两个中括号,第一个为行的下标,第二个为列的下标
# 一个中括号,两个下标用逗号分隔


>>> a[0][1]
1
>>> a[0, 1]
1
>>> a[0][-1]
2
>>> a[0, -1]
2

两个中括号的写法本质是分成了两步,第一步先根据第一个中括号中的下标提取对应的行,返回值为一个一维数组,第二步对第一步提取出的一维数组进行访问,因为产生了临时数组,效率会低一些。

2. 切片索引

切片索引通过切片的方式来提取子集,适用于数组内连续元素的提取,用法如下

>>> a = numpy.arange(6)
>>> a
array([0, 1, 2, 3, 4, 5])
# 一维数组用法和python的列表对象一致
>>> a[1:5]
array([1, 2, 3, 4])
>>> a[1:5:2]
array([1, 3])
>>> a[::2]
array([0, 2, 4])
# 整个数组
>>> a[::-1]
array([5, 4, 3, 2, 1, 0])
# 二维数组
>>> a = numpy.arange(9).reshape(3, -1)
>>> a
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
>>> a[1:3,1:2]
array([[4],
       [7]])
# 一个冒号的简写表示提取全部的下标
# 一个省略号的简写表示提取全部的下标
# 提取第二行
>>> a[1, :]
array([3, 4, 5])
>>> a[1, ...]
array([3, 4, 5])
# 提取第二列
>>> a[:, 1]
array([1, 4, 7])

二维数组的切片不能用两个中括号的写法,因为切片的返回值和原始数组维度相同,第一步切片提取出来之后任然是二维数组

>>> a = numpy.arange(9).reshape(3, -1)
>>> a
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
>>> a[1:3]
array([[3, 4, 5],
       [6, 7, 8]])

3. 花式索引

花式索引,本质是根据下标的集合,即索引数组来提取子集,与切片的区别在于,花式索引可以提

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值