论文阅读笔记(三):Improving Knowledge-aware Dialogue Generation via Knowledge Base Question Answering
“知识是基础,汗水是实践,灵感是思想火花,思想火花人人有,不要放弃它。Chance favors the prepared mind.”——袁隆平寄语青年人
文章目录
关于论文
收录于AAAI 2020
作者:Jian Wang1, Junhao Liu2, Wei Bi3,Xiaojiang Liu3, Kejing He1,*, Ruifeng Xu4, and Min Yang2,*
1South China University of Technology, Guangzhou, China,Shenzhen Institutes of Advanced Technology, 2Chinese Academy of Sciences, Shenzhen, China,3Tencent AI Lab, Shenzhen, China,4Harbin Institute of Technology (Shenzhen), China
摘要
本文研究如何自动生成描述知识图中事实的自然语言文本。考虑到镜头设置较少,论文充分利用了预训练语言模型(PLM)在语言理解和生成方面的强大能力。论文做出了三个主要的技术贡献,即用于弥合KG编码和PLM之间语义差距的表示对齐、用于生成更好的输入表示的基于关系的KG线性化策略和用于学习KG和文本之间对应关系的多任务学习。在三个基准数据集上的大量实验证明了该模型在文本生成任务中的有效性。特别是,论文的模型在完全监督和低资源设置下都优于所有的比较方法。
1 面临的问题
论文面临的主要问题有:如何将常知识融入到开放的对话系统。对于检索相关的事实和生成有意义的响应仅仅依靠单一的不充分的知识数据,特别是这

最低0.47元/天 解锁文章
800

被折叠的 条评论
为什么被折叠?



