11.Improving Knowledge-aware Dialogue Generation via Knowledge Base Question Answering

本篇论文是ACL最新的2019年底完成的一篇论文,主要在融入知识的情况下增加了回复多样性。
主要创新点有三个:
1)MLP训练后迁移学习
2)利用检索对话的方式增强生成式回复多样性
3)两步解码
现在具体分析下模型:
(1)Knowledge-aware Dialogue Encoder
post逐字经过GRU得到隐藏层向量
再通过预训练好的BiGRU得到隐藏层向量、语法向量(语法向量:Who is the best
actor in the movie” is {who,nsubj, actor, prep, in,pobj, hEi});
二者相加拼接起来;
(2)Response Guiding Attention
post和检索出的i个reponse的之间注意力机制(检索是从语料库里选择最相似的n个post,然后根据这n个post检索出i个答案)
比较费解的是对于post编码最终表示为什么用所有字编码平均值来表示
(3&#x

本文探讨了2019年ACL上的一篇论文,重点在于如何通过知识库问答来提升知识感知对话生成的多样性。主要创新包括:MLP的迁移学习,检索对话增强回复多样性和两步解码方法。论文详细介绍了知识感知对话编码器、响应引导注意力机制、MLP预训练过程以及多步解码策略,旨在改善对话系统的知识相关性和回复质量。
最低0.47元/天 解锁文章
945

被折叠的 条评论
为什么被折叠?



