立创天空星GD32开发板 开源嵌入式组件移植测试 OneOS Lite移植测

立创天空星GD32开发板 开源嵌入式组件移植测试 OneOS Lite移植测

移植目标硬件(开发板/芯片/模组)

​ OneOS Lite支持ARM Cortex M核芯片和RISC-V内核的芯片的移植,比如STM32 基于Cortex M核全系列、GD32 基于Cortex M核全列、NXP 基于Cortex M核全系列等。本教程将使用立创开发板GD32F407进行示例移植,其他 ARM Cortex M系列开发板和芯片移植方法类似。调试ARM Cortex M核还需要仿真器,如果您的开发板或者芯片模组没有板载仿真器,就需要连接外置的仿真器,如DAPLink。
在这里插入图片描述

OneOS Lite

​ OneOS Lite是中国移动针对物联网领域推出的轻量级操作系统,具有可裁剪、跨平台、低功耗、高安全等特点,支持ARM Cortex-A和 Cortex-M、MIPS、RISC-V等主流芯片架构,兼容POSIX、CMSIS等标准接口,支持Javascript、MicroPython等高级语言开发模式,提供图形化开发工具,能够有效提升开发效率、降低开发成本,帮助用户快速开发稳定可靠、安全易用的物联网应用。

OneOS Lite总体架构采用分层设计,主体由驱动、内核、组件、安全框架组成。采用一个轻量级内核加多个系统组件的模式,加上海量硬件的适配支持,使OneOS Lite 具备极高的可伸缩性与易用性。

在这里插入图片描述

OneOS系统特点

灵活裁剪:抢占式的实时多任务RTOS内核,支持多任务处理、软件定时器、信号量、互斥锁、消息队列、邮箱和实时调度等特性,RAM和ROM资源占用极小。可灵活裁剪,搭配丰富组件,适应不同客户需求。

跨芯片平台:应用程序可无缝移植,大幅提高软件复用率。支持的主流芯片架构有:ARM Cortex-A和Cortex-M、MIPS、RISC-V等。支持几乎所有的MCU和主流的NB-IOT、4G、WIFI、蓝牙通信芯片。

组件丰富:提供丰富的组件功能,如互联互通、端云融合、远程升级、室内外定位、低功耗控制等。同时提供开放的第三方组件管理工具,支持添加各类第三方组件,以便扩展系统功能。

低功耗设计:支持MCU和外围设备的功耗管理,用户可以根据业务场景选择相应低功耗方案,系统会自动采用相应功耗控制策略,进行休眠和调频调压,有效降低设备整体功耗。

安全设计:针对物联网设备资源受限、海量连接、网络异构等特点,在系统安全、通信安全、数据安全等方面提供多维度安全防护能力。

OneOS开发资料
  1. OneOS源码开源地址

    https://gitee.com/cmcc-oneos/OneOS

    在这里插入图片描述

  2. 开发文档官网

    https://os.iot.10086.cn/v2/doc/homePage

    在这里插入图片描述

  3. 开发工具源码下载

    https://os.iot.10086.cn/download/
    在这里插入图片描述

  4. 开发工具OneOS_Cube

    https://os.iot.10086.cn/download/tool

在这里插入图片描述

OneOS-GD32开发板测试

  1. 下载源码

    git clone https://gitee.com/cmcc-oneos/OneOS.git
    

    在这里插入图片描述
    在这里插入图片描述

内核启动简单分析

在这里插入图片描述
内核启动主要有下面几个步骤:

1. 系统先从启动文件开始运行,然后进入 OneOS Lite的内核启动函数 os_kernel_init()os_kernel_start()2.os_kernel_init中调用k_run_init_call函数执行OS_INIT_LEVEL_PRE_KERNEL_1,进行内核启动前的第一阶段的初始化;
3. 初始化内核各模块,如tick队列,调度器,定时器等
4. 创建recycle,idle,timer,sys系统任务;
5.
<think>好的,我现在需要给用户介绍一下全连接层。首先,我得回忆一下全连接层的基本概念,确保自己理解正确。全连接层,英文是Fully Connected Layer,有时候也叫做密集层Dense Layer)。它在神经网络中很常见,特别是在传统的多层感知机(MLP)里。 接下来,我需要确定全连接层的主要结构和作用。每个神经元都和前一层所有神经元相连,所以参数数量会很多。比如,如果前一层的输出是n个神经元,当前层有m个神经元,那么权重矩阵就是n×m,加上偏置的话,总共有n×m + m个参数。这可能带来计算量大的问题,尤其是在深层网络中。 然后,全连接层的作用是什么?主要是将前面层的特征进行组合,通过线性变换和非线性激活函数,学习复杂的模式。比如,在卷积神经网络后面接全连接层,可以把卷积层提取的局部特征整合起来,用于分类者回归任务。 不过,全连接层也有缺点。参数太多容易导致过拟合,特别是在数据量不足的情况下。可能需要使用Dropout、正则化等技术来缓解。另外,全连接层会丢失空间信息,所以在处理图像等具有空间结构的数据时,通常会先用卷积层提取特征,后面再用全连接层。 需要举例说明吗?比如在图像分类中,卷积层后面接全连接层,最后用softmax输出分类结果。者,在自然语言处理中,全连接层用于词嵌入之后的分类任务。 还要注意,现在有些网络架构开始减少全连接层的使用,比如用全局平均池化代替全连接层,以减少参数数量,防止过拟合。比如GoogLeNet和ResNet就采用了这样的结构。 用户可能想知道全连接层的数学表达式。假设输入是向量x,权重矩阵W,偏置b,激活函数是σ,那么输出就是σ(Wx + b)。这部分需要用LaTeX表示,按照用户的要求,数学公式用$...$者$$...$$格式。比如,输入x的维度是n,全连接层有m个神经元,那么W的形状就是n×m,输出是m维向量。 用户可能还想了解全连接层在反向传播中的作用,如何计算梯度。这部分可能需要详细一点的解释,但用户的问题主要是介绍,所以可能不需要太深入。不过可以提到梯度下降优化时,全连接层的参数更新依赖于链式法则。 总结一下,全连接层的介绍需要包括结构、作用、优缺点、应用场景和数学表达。结构部分要强调每个神经元连接前一层的所有神经元;作用要说明特征组合和学习复杂模式;优缺点要提到参数多、过拟合风险,以及空间信息丢失;应用场景举几个例子,比如分类任务;数学表达式用LaTeX正确书写。 需要检查是否有错误的地方,比如参数计算是否正确。假设输入是n维,输出m维,权重矩阵确实是n×m,加上m个偏置,总参数是n*m + m。没错。激活函数部分,常用的有ReLU、sigmoid、tanh等,可以提到。 另外,全连接层在不同框架中的实现可能名称不同,比如在TensorFlow中是Dense层,PyTorch中是Linear层,但作用是一样的。这点可能对用户有帮助,特别是如果他们使用这些框架的话。 最后,确保回答符合用户的要求:结构清晰,分步骤解释,使用中文,数学公式正确。避免使用Markdown格式,用自然的中文段落,适当分段,使内容易于理解。</think>全连接层Fully Connected Layer)是神经网络中的基础组件,主要用于学习输入特征之间的复杂关系。以下是分步说明: --- ### **1. 基本结构** - **全连接特性**:每个神经元与前一层的**所有神经元**相连(如图像展开为一维向量后连接)。 - **参数计算**:若输入为$n$维向量,输出为$m$维,则权重矩阵为$W \in \mathbb{R}^{n \times m}$,偏置为$b \in \mathbb{R}^m$,总参数量为$n \times m + m$。 - **数学表达**: 输出为$y = \sigma(Wx + b)$,其中$\sigma$为激活函数(如ReLU、Sigmoid)。 --- ### **2. 核心作用** - **特征组合**:通过线性变换($Wx + b$)和非线性激活函数,将输入特征映射到新空间。 - **分类/回归**:常用于网络末端,将学习到的特征转化为类别概率(如Softmax)回归值。 --- ### **3. 典型应用场景** - **图像分类**:卷积层提取局部特征后,用全连接层整合全局信息(如VGG、AlexNet)。 - **自然语言处理**:词嵌入(Word Embedding)后接全连接层进行情感分类。 - **简单示例**: 输入手写数字图像(展平为784维向量),全连接层输出10维概率(对应0-9分类)。 --- ### **4. 优缺点分析** - **优点**: - 强大的特征拟合能力,适合学习全局模式。 - 实现简单,易于与其他层(如卷积层)结合。 - **缺点**: - 参数量大,易导致**过拟合**(需配合Dropout、正则化)。 - 丢失空间信息(如将图像展平为向量)。 --- ### **5. 替代方案** 现代网络常通过以下方式减少全连接层依赖: - **全局平均池化**(Global Average Pooling):直接对特征图取均值,替代全连接层(如ResNet)。 - **1x1卷积**:在保留空间信息的同时降维(如GoogLeNet)。 --- ### **代码示例(PyTorch)** ```python import torch.nn as nn # 定义全连接层:输入维度784,输出维度10 fc_layer = nn.Linear(784, 10) # 前向传播 input = torch.randn(32, 784) # 批大小32 output = fc_layer(input) # 输出形状(32, 10) ``` 全连接层是理解深度学习的基石,但在实际应用中需权衡其计算成本与模型效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值