EEFO的灵感来自自然界中电鳗表现出的智能群体觅食行为。该算法对四种关键的觅食行为进行数学建模:相互作用、休息、狩猎和迁移,以在优化过程中提供探索和利用。
1、相互作用
当鳗鱼遇到鱼群时,它们会通过游泳和相互搅动来互动。然后,鳗鱼开始在一个巨大的带电圆圈中游泳,在圆圈中心诱捕许多小鱼。在EEFO中,每条电鳗都是候选溶液,到目前为止,在每个步骤中获得的最佳候选溶液被认为是预期的猎物。这种相互作用表明,每条鳗鱼都使用鳗鱼位置的信息与其他个体进行合作互动。这种行为可以看作是全局探索阶段。具体来说,电鳗可以通过使用种群中所有个体的位置信息与从种群中随机选择的任何鳗鱼相互作用。更新鳗鱼的位置涉及比较随机选择的鳗鱼与种群中心之间的差异。
此外,电鳗可以通过利用搜索空间中的区域信息与种群中其他随机选择的鳗鱼进行交互。通过确定从种群中随机选择的鳗鱼与搜索空间中随机生成的鳗鱼之间的差异来更新鳗鱼的位置。鳗鱼之间的相互作用以搅动为标志,这表示各个方向的随机运动。
交互行为可以定义为:
2、休息
在EEFO中,应在电鳗进行休息行为之前建立休息区。为了提高搜索效率,在搜索空间中,在将鳗鱼位置矢量的任何一个维度投影到主对角线上的区域建立了一个休息区。为了确定鳗鱼的休息区域,搜索空间和鳗鱼的位置都归一化为 0-1 的范围。随机选择的鳗鱼位置维度被投影到归一化搜索空间的主对角线上。投影位置被认为是鳗鱼休息区的中心。在执行休息行为之前,鳗鱼的休息位置是在其休息区域内获得的:
当确定休息区域后,鳗鱼将移动到该区域休息。也就是说,鳗鱼在其休息区的休息位置更新其朝向休息区的位置。静息行为可以表示为:
3、狩猎
当鳗鱼找到猎物时,它们不会简单地蜂拥而至。相反,它们倾向于合作地形成一个大圆圈并包围猎物。同时,他们通过低电器官放电不断与同龄人交流和合作。随着鳗鱼相互作用的加剧,带电圈减小。最后,鳗鱼将鱼群从较深的一端驱赶到浅水一端,在那里它们很容易成为猎物。基于这种行为,带电的圆圈变成了狩猎区,此时,猎物开始在狩猎区四处乱跑,因此猎物会因为受到惊吓而突然连续地从当前位置移动到狩猎空间中的其他位置。
因此,灰色在狩猎区域内的先前位置的新位置可以生成为:
确定狩猎区域后,鳗鱼开始在狩猎区域捕食。捕猎时,鳗鱼会迅速找到猎物的新位置并卷曲,将其头部和尾巴与猎物结合在一起,它会在灰色周围释放高压电流。在EEFO中观察到的狩猎行为涉及卷曲运动,即鳗鱼的位置被更新到猎物的新位置。鳗鱼在狩猎过程中表现出的卷曲行为可以描述如下:
迁移
当鳗鱼找到猎物时,它们往往会从休息区迁移到狩猎区。
鳗鱼可以通过低放电感知猎物的位置,因此它可以随时调整自己的位置。如果鳗鱼在觅食过程中感觉到猎物的接近,它们就会移动到候选位置;否则,鳗鱼会停留在当前位置。鳗鱼的位置由更新:
从勘探到开采的过渡
在EEFO中,搜索行为由能量因子决定,能量因子可以有效地管理探索和利用之间的过渡,以提高算法的优化性能。鳗鱼能量因子的值用于在勘探和开发之间做出选择。能量因数定义为: