1. 二分查找简介
不论是学习Python还是学习C语言,甚至是学习Matlab的时候,我都遇到过一个叫“猜数字”的题目。其实,这个问题就是一个查找问题,而解决它的最好办法就是我们都使用过的二分查找。仔细想想,不论是猜数字,还是猜字母,这类游戏的特点就是我们要查找的序列是有序的。在这种有序的序列上应用二分查找可以大大缩短查找时间。
2. 二分查找的代码实现
我们首先实现二分查找,
def binary_search(sequence,item):
'二分查找'
low = 0
high = len(sequence) - 1
while low <= high:
mid = (low + high) // 2
guess = sequence[mid]
if guess == item:
return mid
elif guess > item:
high = mid - 1
else:
low = mid + 1
return None
其中要注意的点是low和high的值,不论是初始值中high的设定或是在循环中更新时的减一操作(否则将在low == high时陷入死循环)。
同时,为了对比二分查找与普通的顺序查找,我们实现顺序查找如下:
def sequential_search(sequence,item):
'顺序查找'
low = 0
high = len(sequence) - 1
while low <= high:
guess = sequence[low]
if guess == item:
return low
else:
low += 1
return None
3. 二分查找与顺序查找的时间对比
我们使用random库随机产生步长从而构造一个有序序列,在其上分别使用二分查找以及顺序查找,使用time库进行简单的对比,同时修改函数使我们能记录查找的次数。
我们用到的函数如下:
import random
import time
def binary_search(sequence,item):
'二分查找'
low = 0
high = len(sequence) - 1
times = 0
while low <= high:
mid = (low + high) // 2
guess = sequence[mid]
times += 1
if guess == item:
return mid,times
elif guess > item:
high = mid - 1
else:
low = mid + 1
return None,times
def sequential_search(sequence,item):
'顺序查找'
low = 0
high = len(sequence) - 1
times = 0
while low <= high:
guess = sequence[low]
times += 1
if guess == item:
return low,times
else:
low += 1
return None,times
def get_sequence(length):
'产生序列'
sequence = [0]
for i in range(length - 1):
step = random.randint(1,10)
sequence.append(sequence[i] + step)
return sequence
def main(sequence,item):
start = time.time()
location,times = binary_search(sequence,item)
end = time.time()
print('二分查找时间:{};次数:{}'.format(end - start,times))
start = time.time()
location,times = sequential_search(sequence,item)
end = time.time()
print('顺序查找时间:{};次数:{}\n'.format(end - start,times))
为了增加对比效果,我们将item设置为-1使查找遍历整个序列。
执行具体代码获得结果:
item = -1
sequence_10000 = get_sequence(10000)
main(sequence_10000,item)
sequence_100000 = get_sequence(100000)
main(sequence_100000,item)
sequence_1000000 = get_sequence(1000000)
main(sequence_1000000,item)
具体的结果是
二分查找时间:0.0;次数:13
顺序查找时间:0.0009953975677490234;次数:10000
二分查找时间:0.0;次数:16
顺序查找时间:0.011935234069824219;次数:100000
二分查找时间:0.0;次数:19
顺序查找时间:0.11763334274291992;次数:1000000
可以看到,对于长度分别为10000,100000,1000000的序列,应用二分查找时的时间都可以被忽略,而使用顺序查找时时间几乎按照倍率递增。同时,对于查找次数,二分查找的递增也十分缓慢。
对于顺序查找,我们很容易理解它是线性递增的。下面我们试着讨论二分查找的时间规律。
4. 二分查找为什么是对数时间
我们试图寻找二分查找下,查找次数如何随元素个数增加。在顺序查找中,这很明显是线性关系。
首先,我们假设有n个元素,要查找x次。我们只考虑最坏的情况,这样,有
n * 0.5 * 0.5 * 0.5 * ... * 0.5 = 1
这里面共有x个0.5,也就是每查找一次,我们需要考虑的n减小一半,最后减小到1。
这个式子可以写成
n * 0.5^(x) = 1
也就是对数形式的
x = log2(n)
我们发现,这种关系实际上是我们熟悉的对数关系。
当序列有一亿个元素时,我们也只需要最多进行log2(100000000)次查找,即大约27次查询。这告诉我们,在序列长度极大的情况下,我们一定要选择二分查找而不是顺序查找。
我们使用O(操作数)来表示这种关系,那么顺序查找可以表示为O(n),而二分查找可以表示为O(log n)。这种表示法称为大O表示法。大O表示法永远说的是最糟的情况。这种使用操作数表示的量实际上是我们用来表征算法速度的,但是这个速度指的不是时间,而是随着元素的增加,操作数增长的速度。
下面我们列举五种常见的大O运行时间:
- O(log n),即对数时间,如上面的二分查找。
- O(n),即线性时间,如上面的顺序查找。
- O(o * log n),如快速排序。
- O(n^2),如选择排序。
- O(n!),即阶乘时间,如旅行商问题。
它们按照从快到慢的顺序排列,最后一个的运行时间极为漫长(增长极为迅速)。这种阶乘时间一类的算法典型的包括旅行商问题。旅行商问题指的是,一个商人前往五个城市,如何保证这趟旅行的线路最短。这需要我们排列出所有的可能,也就是5 * 4 * 3 * 2 * 1种可能性。这种问题是否存在更好的解决方法是现在仍然需要解决的问题。