kaggle学习计划之Herbarium 2022 - FGVC9

因为代码偏弱,我迫切想要针对图像识别各个模块进行进步,kaggle是一个很好的学习代码比赛,里面会分享很多参赛者的思路,甚至有机会可能学习到其代码和具体实现方法!!!

这周学习的内容,我同样找到了一个农作物的识别比赛,上面针对医学识别和农作物识别还是挺多的,在这里我将记录一下作者的一些想法,方便我后期的学习和使用。

Backbones:(最近针对图像的swin模型确实很好,有很大的发展空间!!!)

(粗体是我要看的模型)

好像大多数都是从训练策略上进行调整

idbackbonepublicprivate
0swin-B0.854990.86055
1convnext-B0.854640.85956
2deit-iii B0.844230.8495
3resnest-1010.832080.83838
4efficient-B60.838410.84321
5cswin-L0.843730.8501
6swin-L0.850570.85607
7swinv2-B0.858510.86282

单个模型上面的优化

changepublicprivate
swin-B 224 baseline0.77223

0.78442

add cross-entropy losses on genera,species, family

交叉熵loss添加

0.78290.79544

learning rate from 2e-4 to 5e-4

学习率的变化

0.794440.80501

+5crop (resize 256, 288, 320, 384, 448 and center crop 224)

调节图像大小和中心裁剪

0.800880.80981

replacing cross-entropy by subcenter-arcface with dynamic margins

用subcenter-arcface代替cross-entropy loss

0.815320.82267

+ extra fc by cross-entropy, add to subcenter-arcface output after softmax

fc使用交叉熵,softmax之后使用arcface输出

0.822010.82929

+ data augmentation the same with Swin-Transformer

数据增强

0.83150.83554

from swin-B224 to SwinB384

改变模型

0.84680.85245

+5crop (resize 400, 416, 448, 480, 512 and center crop 384)

调节图像大小和中心裁剪

0.848950.85654

+Freeze layers (not update parameters) from 100 to 0

将层(不更新参数)从 100 冻结到 0,应该就是都改变

0.854990.86055

+square resize and test crop from 384

从 384 调整大小并测试裁剪

0.855630.86201

+from swin base to swin V2

改变模型到V2

0.858510.86282

Fusion:
we utilize the scores on public dataset as the weight.

这边的话就是增加公共数据集来提高精度

fusion approachpublicprivate
fusion models (0,1,2)0.863660.8679
fusion models (0,1,2,3,4)0.866190.87185
fusion models (0,1,2,3,4,5,6,7)0.871930.87662

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值