性质1:


至于为什么V的列向量是ATA的特征向量,由(式15.20)可知将V右乘等式两边,可把VT消掉,因为V为正交矩阵,VVT=E。所以可以看出其满足特征向量和特征值的定义(如下的形式)。
特征向量和特征值定义:
如果数λ和非零列向量x使关系式:Mx=λx成立。那么这样的数λ称为矩阵M的特征值,非零向量x称为A的对应特征值λ的特征向量。
U的列向量是AAT的特征向量也同理。
至于为什么Σ的奇异值是ATA和AAT的特征值的平方根,因为ATA和AAT的特征值是λ,又因为奇异值σ=sqrt(λ),所以咯…