奇异值分解SVD的主要性质分析

本文深入探讨奇异值分解SVD的五个关键性质,包括SVD中V的列向量与ATA的关系,奇异值与特征值的联系,矩阵秩的确定,以及SVD在值域和零空间中的作用。内容源于《李航统计学习方法第二版》。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

性质1:

在这里插入图片描述在这里插入图片描述
至于为什么V的列向量是ATA的特征向量,由(式15.20)可知将V右乘等式两边,可把VT消掉,因为V为正交矩阵,VVT=E。所以可以看出其满足特征向量和特征值的定义(如下的形式)。
特征向量和特征值定义:
 如果数λ和非零列向量x使关系式:Mx=λx成立。那么这样的数λ称为矩阵M的特征值,非零向量x称为A的对应特征值λ的特征向量。
U的列向量是AAT的特征向量也同理。
 至于为什么Σ的奇异值是ATA和AAT的特征值的平方根,因为ATA和AAT的特征值是λ,又因为奇异值σ=sqrt(λ),所以咯…

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

#苦行僧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值