😄 不得不说,腾讯在这方面还是有挺多论文的哈~
文章目录
✅【PAKDD-2024 腾讯 MDAN】《MDAN: Multi-distribution Adaptive Networks for LTV Prediction》
论文链接:添加链接描述
1 精简总结
1、根据输入特征生成不同ltv分布对应的embedding。
2、根据输入特征生成不同ltv分布对应的权重,该权重可和预先根据ltv分桶好的档位标签计算ce_loss。
3、上述对应权重和embedding进行加权生成聚合embedding,再经过fc得到pltv,和ltv标签计算ltv_mse_loss。
4、loss:ce_loss,ltv_mse_loss,dissim_loss (用于学习使得不同ltv分布对应的embedding的差异和ltv值的差异保持一致)。
2 背景&挑战
- 稀疏性:付费数据不平衡,大多数用户不付费。
- 差异性:大R消费金额大,与普通付费用户分布有差异,二八定律。
3 方法

订阅专栏 解锁全文
841

被折叠的 条评论
为什么被折叠?



