关于DAU、LTV、ROI的测算

DAU预估

预估方法主要是用群组分析cohort方法进行预估测算,其中有两个核心指标是新增量留存率的测算。
新增量的测算
C端用CAC和新客费用,比如100W能够买量100W个用户,其中CAC获客成本在市场中是固定的,也是可以直接得到具体数值的。
B端用人效和人数,比如做增量的销售有100个,每个人每月能签约10个客户,那么本月新增量等于100*10=1000个客户。
留存率的测算
留存率为新增量m个在第n天的留存率Rn是多少,那我们需要通过历史数据(散点图)拟合得出留存率曲线函数,函数一般用幂函数或者指数函数或者分段函数(幂函数+常数函数)。其中留存率曲线会存在季节性因素等等,要考虑不同月份的曲线。

LTV测算

LTV测算,等于DAU预估值*ARPU预估值。
ARPU预估值,也是从函数进行拟合测算。

ROI测算

LTV/CAC,由某某引起的投入与由某某引起的产出的比值。
ROI的测算还是比较有难度的,一般的思路是看谁被影响了,每个个体都影响了哪些。

在游戏运营领域,对数函数模型是一种有效的工具,用于根据留存率数据预测DAULTV。首先,了解留存率是指在特定时间后,仍然活跃的用户比例。通过构建对数函数模型,我们可以模拟留存率随时间的衰减趋势,进而预测未来一段时间内的DAU。 参考资源链接:[游戏运营:通过留存预测DAULTV的数学攻略](https://wenku.csdn.net/doc/7hft77z934) 在实际操作中,通常会有一个留存率的初始数据集,比如次日留存、三日留存和七日留存的比例。我们可以利用这些数据点,通过最小二乘法等数学方法来估计对数函数模型的参数。例如,如果我们有以下留存数据:次日留存42%,三日留存27%,七日留存15%,我们可以假设留存率R(t)随时间t的变化满足对数函数关系: \[ R(t) = a \cdot \ln(b \cdot t + 1) + c \] 其中,\( a \)、\( b \)、\( c \)是模型参数。通过数据拟合,我们可以确定这些参数的值,从而得到预测留存率的函数模型。然后,通过代入具体的天数,我们可以计算出任意天数的留存率。 预测DAU时,我们需要考虑新增用户数。DAU可以表示为: \[ \text{DAU}(t) = \sum_{i=1}^{t} \text{新增用户}_i \cdot R(t-i) \] 其中,\( \text{新增用户}_i \)是第i天新增的用户数。 对于LTV的预测,它与DAU紧密相关。LTV的计算公式为: \[ \text{LTV} = \sum_{t=1}^{T} \frac{\text{DAU}(t) \cdot \text{ARPU}}{(1 + r)^t} \] 这里的T是考虑的时间范围,ARPU是每用户平均收入,r是折现率。 为了使预测模型更加准确,实际操作时需要不断调整模型参数,并结合游戏的具体运营数据和市场环境进行校准。此外,持续监测市场动态和用户行为的变化,对于调整和优化预测模型也至关重要。因此,推荐深入阅读《游戏运营:通过留存预测DAULTV的数学攻略》,该资料将为你提供更加深入的理论基础和实践案例,帮助你在游戏运营领域取得成功。 参考资源链接:[游戏运营:通过留存预测DAULTV的数学攻略](https://wenku.csdn.net/doc/7hft77z934)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值