😄 cmltv的loss好多哟,花样好多哟~
✅【arxiv-2023 华为 CMLTV】《Contrastive Multi-view Framework for Customer Lifetime Value Prediction》
论文链接: https://arxiv.org/pdf/2306.14400
1 精简总结
基于多视角的对比学习框架:该框架通过联合优化具有不同特征和优势的多种回归器来编码和融合全面的知识,通过互补的知识来提高模型的鲁棒性,并通过对比学习捕捉样本的相关性,以减轻对数据丰富性的依赖。
说白了,其实就是多任务loss+对比学习loss。包含了:分布基回归器: 使用概率模型(如对数正态和伽马分布)来近似真实的LTV分布。对数基回归器: 预测LTV的对数值,适用于神经网络处理。分类基回归器: 将回归任务转换为分类问题,然后从类别概率中重建实值分数。通过对比学习机制显式编码样本之间的相关性,同时构建二分类购买预测器和LTV回归器之间的有机连接,分类对比损失: 比较正样本和负样本的平均购买概率。回归对比损失: 规范化回归结果与预测购买概率的正相关性。