已知三边解三角形

概念解析

一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素。
已知三角形的几个元素求其他元素的过程叫做解三角形。
解三角形,常用到正弦定理和余弦定理和面积公式等。
在本篇文章中,还加入了正余弦值、高、中线等。

本篇文章涉及公式:

正弦定理:

余弦定理:

海伦公式:

Python代码实现

用户输入:
a = float(input("请输入角A的对边a:"))
b = float(input("请输入角B的对边b:"))
c = float(input("请输入角C的对边c:"))
三角正余弦值:
cosA = (b**2 + c**2 - a**2) / (2*b*c)
sinA = (1 - cosA**2)**(1/2)
cosB &
### Java 实现已知三边长计算三角形面积 以下是基于海伦公式的实现代码,用于通过给定的三边长度来计算三角形的面积。该程序会首先验证输入的三边是否能够组成有效的三角形[^3]。 ```java import java.util.Scanner; public class TriangleAreaCalculator { public static void main(String[] args) { System.out.println("请输入三角形三边长度:"); // 创建Scanner对象读取用户输入 Scanner scanner = new Scanner(System.in); // 获取三边长度 double sideA = scanner.nextDouble(); double sideB = scanner.nextDouble(); double sideC = scanner.nextDouble(); // 判断是否能构成三角形 if (sideA + sideB > sideC && sideA + sideC > sideB && sideB + sideC > sideA) { // 使用半周长公式计算p double p = 0.5 * (sideA + sideB + sideC); // 海伦公式计算面积 double area = Math.sqrt(p * (p - sideA) * (p - sideB) * (p - sideC)); // 输出结果 System.out.printf("三角形的面积为:%.2f\n", area); } else { System.out.println("此三边不能构成三角形,无法计算面积!"); } // 关闭scanner scanner.close(); } } ``` 上述代码实现了以下功能: 1. **输入处理**:提示用户输入三个浮点数作为三角形三边长度。 2. **合法性校验**:利用三角形不等式条件 `a+b>c`、`a+c>b` 和 `b+c>a` 来判断输入的三边能否形成有效三角形。 3. **面积计算**:如果满足条件,则按照海伦公式 \( \text{area} = \sqrt{s(s-a)(s-b)(s-c)} \),其中 \( s=\frac{a+b+c}{2} \)[^2] 进行计算并输出结果;否则返回错误消息。 #### 注意事项 - 输入数据应为正实数,且需满足三角形成立的基本条件。 - 如果输入不符合要(如负数或零),则不会进入合法性的进一步检测阶段。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值