图形学数学笔记-01向量

向量

向量性质

n n n维向量表示为 V = ⟨ V 1 , V 2 , ⋯   , V n ⟩ \mathbf{V}=\left\langle V_{1}, V_{2}, \cdots, V_{n}\right\rangle V=V1,V2,,Vn

向量 V V V也可表示成仅有一列 n n n行矩阵
v = [ V 1 V 2 ⋮ V n ] \mathbf{v}=\left[\begin{array}{c}{V_{1}} \\ {V_{2}} \\ {\vdots} \\ {V_{n}}\end{array}\right] v=V1V2Vn
v T = [ V 1 V 2 ⋯ V n ] \mathbf{v}^{T}=\left[\begin{array}{llll}{V_{1}} & {V_{2}} & {\cdots} & {V_{n}}\end{array}\right] vT=[V1V2Vn]
n n n维向量的绝对值是标量
∥ V ∥ = ∑ i = 1 n V i 2 \|\mathbf{V}\|={\sum_{i=1}^{n}V_i^2} V=i=1nVi2

内积

两个 n n n维向量 P P P Q Q Q的内积是一个标量,定义:
P ⋅ Q = ∑ i = 1 n P i Q i = P 1 Q 1 + P 2 Q 2 + ⋯ + P n Q n \mathbf{P} \cdot \mathbf{Q}=\sum_{i=1}^{n} P_{i} Q_{i}=P_{1} Q_{1}+P_{2} Q_{2}+\cdots+P_{n} Q_{n} PQ=i=1nPiQi=P1Q1+P2Q2++PnQn
向量 P P P Q Q Q的内积 P ⋅ Q \mathbf{P} \cdot \mathbf{Q} PQ的矩阵乘法:
P T ⋅ Q = [ P 1 P 2 ⋯ P n ] [ P 1 P 2 ⋮ P n ] \mathbf{P}^{\mathrm{T}} \cdot \mathbf{Q}=\left[\begin{array}{llll}{P_{1}} & {P_{2}} & {\cdots} & {P_{n}}\end{array}\right]\left[\begin{array}{c}{P_{1}} \\ {P_{2}} \\ {\vdots} \\ {P_{n}}\end{array}\right] PTQ=[P1P2Pn]P1P2Pn
内积与向量 P P P Q Q Q的夹角有关
P ⋅ Q = ∥ P ∥ ∥ Q ∥ cos ⁡ α \mathbf{P} \cdot \mathbf{Q}=\|\mathbf{P}\|\|\mathbf{Q}\| \cos \alpha PQ=PQcosα

Cauchy-Schwarz不等式

∥ P ⋅ Q ∥ ≤ ∥ P ∥ ∥ Q ∥ \|\mathbf{P} \cdot \mathbf{Q}\| \leq \|\mathbf{P}\|\|\mathbf{Q}\| PQPQ

向量投影

向量 P P P在向量 Q Q Q上的投影 proj Q P \text{proj}_{Q} \mathbf{P} projQP可表示为
proj Q P = P ⋅ Q ∥ Q ∥ 2 Q \text{proj}_{Q} \mathbf{P}=\frac{\mathbf{P} \cdot \mathbf{Q}}{\|\mathbf{Q}\|^{2}} \mathbf{Q} projQP=Q2PQQ
向量 P P P相对于向量 Q Q Q上的垂直分量 prep Q P \text{prep}_{Q} \mathbf{P} prepQP可表示为
perp Q P = P −  proje  P = P − P ⋅ Q ∥ Q ∥ 2 Q \begin{aligned} \text{perp}_{\mathrm{Q}} \mathbf{P} &=\mathbf{P}-\text { proje } \mathbf{P} \\ &=\mathbf{P}-\frac{\mathbf{P} \cdot \mathbf{Q}}{\|\mathbf{Q}\|^{2}} \mathbf{Q} \end{aligned} perpQP=P proje P=PQ2PQQ
向量 P P P在向量 Q Q Q上的投影是向量 P P P的线性变换,可以表示成矩阵向量乘积。在三维情况下 proj Q \text{proj}_{Q} projQ计算为
proj Q P = 1 ∥ Q ∥ 2 [ Q x 2 Q x Q y Q x Q z Q x Q y Q y 2 Q y Q z Q x Q z Q y Q z Q z 2 ] [ P x P y P z ] \text{proj}_{Q} \mathbf{P}=\frac{1}{\|\mathbf{Q}\|^{2}} \left[\begin{array}{ccc}{Q_{x}^{2}} & {Q_{x} Q_{y}} & {Q_{x} Q_{z}} \\ {Q_{x} Q_{y}} & {Q_{y}^{2}} & {Q_{y} Q_{z}} \\ {Q_{x} Q_{z}} & {Q_{y} Q_{z}} & {Q_{z}^{2}}\end{array}\right]\left[\begin{array}{c}{P_{x}} \\ {P_{y}} \\ {P_{z}}\end{array}\right] projQP=Q21Qx2QxQyQxQzQxQyQy2QyQzQxQzQyQzQz2PxPyPz

外积

两个三维向量 P P P Q Q Q的外积仍是一个三维向量,定义:
P × Q = ⟨ P y Q z − P z Q y , P z Q x − P x Q z , P x Q y − P y Q x ) \mathbf{P} \times \mathbf{Q}=\left\langle P_{y} Q_{z}-P_{z} Q_{y}, P_{z} Q_{x}-P_{x} Q_{z}, P_{x} Q_{y}-P_{y} Q_{x}\right) P×Q=PyQzPzQy,PzQxPxQz,PxQyPyQx)
伪行列式计算向量外积:
P × Q = ∣ i j k P x P y P z Q x Q y Q z ∣ = i ( P y Q z − P z Q y ) − j ( P x Q z − P z Q x ) + k ( P x Q y − P y Q x ) \begin{aligned} \mathbf{P} \times \mathbf{Q}&=\left|\begin{array}{ccc}{\mathbf{i}} & {\mathbf{j}} & {\mathbf{k}} \\ {P_{x}} & {P_{y}} & {P_{z}} \\ {Q_{x}} & {Q_{y}} & {Q_{z}}\end{array}\right| \\&=\mathbf{i}\left(P_{y} Q_{z}-P_{z} Q_{y}\right)-\mathbf{j}\left(P_{x} Q_{z}-P_{z} Q_{x}\right)+\mathbf{k}\left(P_{x} Q_{y}-P_{y} Q_{x}\right) \end{aligned} P×Q=iPxQxjPyQykPzQz=i(PyQzPzQy)j(PxQzPzQx)+k(PxQyPyQx)
外积 P × Q \mathbf{P} \times \mathbf{Q} P×Q也写成矩阵与向量乘积的形式:
P × Q = [ 0 − P z P y P z 0 − P x − P y P x 0 ] [ Q x Q y Q z ] \mathbf{P} \times \mathbf{Q}=\left[\begin{array}{ccc}{0} & {-P_{z}} & {P_{y}} \\ {P_{z}} & {0} & {-P_{x}} \\ {-P_{y}} & {P_{x}} & {0}\end{array}\right]\left[\begin{array}{l}{Q_{x}} \\ {Q_{y}} \\ {Q_{z}}\end{array}\right] P×Q=0PzPyPz0PxPyPx0QxQyQz
令两个向量 P P P Q Q Q为三维向量,则 ( P × Q ) ⋅ P = 0 (\mathbf{P} \times \mathbf{Q}) \cdot \mathbf{P}=0 (P×Q)P=0,而且 ( P × Q ) ⋅ Q = 0 (\mathbf{P} \times \mathbf{Q}) \cdot \mathbf{Q}=0 (P×Q)Q=0

( P × Q ) ⋅ R (\mathbf{P} \times \mathbf{Q}) \cdot \mathbf{R} (P×Q)R的值计算方式:
( P × Q ) ⋅ R = ∣ P x P y P z Q x Q y Q x R x R y R x ∣ (\mathbf{P} \times \mathbf{Q}) \cdot \mathbf{R}=\left|\begin{array}{lll}{P_{x}} & {P_{y}} & {P_{z}} \\ {Q_{x}} & {Q_{y}} & {Q_{x}} \\ {R_{x}} & {R_{y}} & {R_{x}}\end{array}\right| (P×Q)R=PxQxRxPyQyRyPzQxRx

向量的外积不满足交换律 P × Q = − ( Q × P ) \mathbf{P} \times \mathbf{Q}=-(\mathbf{Q} \times \mathbf{P}) P×Q=(Q×P)

外积 P × Q \mathbf{P} \times \mathbf{Q} P×Q的大小与向量 P P P Q Q Q的夹角 α \alpha α之间的关系如下:
∥ P × Q ∥ = ∥ P ∥ ∥ Q ∥ sin ⁡ α \|\mathbf{P} \times \mathbf{Q}\|=\|\mathbf{P}\|\|\mathbf{Q}\| \sin \alpha P×Q=PQsinα

向量空间

向量属于一个被称为向量空间的集合。
定义 向量空间是一个集合 V V V,该集合的元素都是向量,定义了加法和标量乘法,则以下性质成立。

  1. 集合 V V V对加法运算封闭,即集合 V V V中的任意向量 P P P Q Q Q,他们的和 P + Q P+Q P+Q也是集合 V V V的向量。
  2. 集合 V V V对标量乘法运算封闭,即对于任意实数 a a a和集合 V V V中的任意向量 P P P,他们的积 a P aP aP也是集合 V V V的向量。
  3. 集合 V V V中存在 0 0 0向量,对于集合 V V V中的任意向量 P P P P + 0 = 0 + P = P P+0=0+P=P P+0=0+P=P成立。
  4. 对于集合 V V V中的任意向量 P P P,在集合 V V V中存在向量 Q Q Q,使 P + Q = 0 P+Q=0 P+Q=0成立。
  5. 集合 V V V中的向量满足结合律,即对于集合 V V V中的任意向量 P P P Q Q Q R R R ( P + Q ) + R = P + ( Q + R ) (P+Q)+R=P+(Q+R) (P+Q)+R=P+(Q+R)
  6. 标量乘法满足结合律,即对于任意实数 a a a b b b,以及集合 V V V中的任意向量 P P P ( a b ) P = a ( b P ) (ab)P=a(bP) (ab)P=a(bP)成立。
  7. 标量与向量和的乘法满足分配律,即对于任意实数 a a a,以及集合 V V V中的任意向量 P P P Q Q Q a ( P + Q ) = a P + a Q a(P+Q)=aP+aQ a(P+Q)=aP+aQ成立。
  8. 标量与向量的乘法满足分配律,即对于任意实数 a a a b b b,以及集合 V V V中的任意向量 P P P ( a + b ) P = a P + b P (a+b)P=aP+bP (a+b)P=aP+bP成立。

由实数组成的 n n n元组形式的向量都满足这些性质。包含全部 n n n元组形式的向量的向量空间表示为 R n \mathbb{R}^n Rn,例如,包含所有三维向量的向量空间可表示为 R 3 \mathbb{R}^3 R3

Gram-Schmidt 正交化

n n n维向量空间的基 B = { e 1 , e 2 , ⋯   , e n } \mathcal{B}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \cdots, \mathbf{e}_{n}\right\} B={e1,e2,,en}通过以下等式可构造一个新的正交向量集合 B ′ = { e 1 ′ , e 2 ′ , ⋯   , e n ′ } \mathcal{B}'=\left\{\mathbf{e}_{1}', \mathbf{e}_{2}', \cdots, \mathbf{e}_{n}'\right\} B={e1,e2,,en}而正交化。

  1. e 1 ′ = e 1 \mathbf{e}_{1}^{\prime}=\mathbf{e}_{1} e1=e1
  2. i = 2 i=2 i=2
  3. 从向量 e i \mathbf{e}_{i} ei中减去 e i \mathbf{e}_{i} ei在向量 e 1 ′ , e 2 ′ , ⋯   , e i − 1 ′ \mathbf{e}_{1}', \mathbf{e}_{2}', \cdots, \mathbf{e}_{i-1}' e1,e2,,ei1上的投影,结果保存在 e i ′ \mathbf{e}_{i}^{\prime} ei中,即
    e i ′ = e i − ∑ k = 1 i − 1 e i ⋅ e k ′ e k ′ 2 e k ′ \mathbf{e}_{i}^{\prime}=\mathbf{e}_{i}-\sum_{k=1}^{i-1} \frac{\mathbf{e}_{i} \cdot \mathbf{e}_{k}^{\prime}}{\mathbf{e}_{k}^{\prime 2}} \mathbf{e}_{k}^{\prime} ei=eik=1i1ek2eiekek
  4. 如果 i &lt; n i &lt; n i<n i i i加一,转到步骤(3)。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值