金融风控机器学习第三十三天---拜师课堂 聚类

聚类是一种无监督学习任务。
聚类的结果应该满足:“簇内相似度”高且“簇间相似度”低

原型聚类:k均值算法(k-means)、高斯混合聚类算法.
原型聚类算法假设聚类结构能够通过一组原型刻画,是最为常用的方法.此类算法首先初始化原型,然后对原型进行迭代更新求解。

密度聚类:DBSCAN
密度聚类假设聚类结构能够通过样本分布的紧密程度确定.此类算法从样本密度的角度出发来考察样本之间的可连接性,并基于可连接样本不断扩展聚类簇来获得最终的结果.

在这里插入图片描述
对初始值比较敏感 可以使用kmeans++
在这里插入图片描述

最好的衡量指标
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

发布了44 篇原创文章 · 获赞 0 · 访问量 838
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 深蓝海洋 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览