基于局部对比度(LCM)的红外弱小目标检测之背景抑制

本文详细介绍了基于局部对比度(LCM)的红外弱小目标检测方法,通过对比度测量增强小目标区域并抑制背景区域。算法核心是计算目标与背景的灰度差异,通过对比度值确定目标区域并进行增强或抑制,从而实现目标检测。文中还提供了MATLAB和C++版本的代码实现。
摘要由CSDN通过智能技术生成

基于局部对比度(LCM)的红外弱小目标检测-Infrared Small Target Detection

1,原理

红外弱小目标检测跟踪算法研究

参考链接:

https://blog.csdn.net/Hilaryw/article/details/137232793
https://blog.csdn.net/hilaryw/category_12556265.html

Local Contrast Measure(LCM)该方法实现过程一句话就可以概括:增强图像中的小目标区域,同时抑制图像中的背景区域。

问题一:你怎么知道图像哪部分是小目标区域,哪部分是背景区域?

问题二:怎么增强又怎么抑制呢?…

如何识别出小目标呢?没错,你正是通过小目标和周围背景的灰度差异来实现目标的识别的。通俗点说,就是小目标看起来更亮,而背景看起来更暗。那么问题来了,我们怎么让电脑通过这种灰度差异来检测出小目标呢?这时,我们就要定量地来描述目标和背景间的这种灰度差异。于是我们就引出局部对比度测量的概念。我们来看一张图:
在这里插入图片描述
上图中,最外面的蓝色框代表整张图片的边

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值