数学 {介值定理,极值定理,零点定理}

文章介绍了介值定理的概念,强调了连续函数与介值定理的关系,并举例说明非连续函数可能满足介值定理。接着解释了极值定理,指出在闭区间上连续函数必定存在最大值和最小值。最后提到了零点定理,阐述了保证函数在某区间内存在零点的条件。这些定理是微积分中的基础工具。
摘要由CSDN通过智能技术生成

数学 {介值定理,极值定理,零点定理}

介值定理

定义

#Intermediate value theorem#;
+(函數的介值屬性): 函數在區間 I I I上的值域(像的集合) 是個區間, 即f(I)是個區間, 則該函數在區間I上滿足介值定理;
+(集合的介值屬性): 如果一個實數集合 同時是個區間, 則該集合滿足介值定理;

性质

爲什麽叫介值呢? 該定理所表達的意思 就是說 你所有的值 都是介於一個區間T裏面的(即都是區間T裏的元素);
比如說函數F在區間I上連續 (令mi,ma: 值域的最小/最大值), 那麽任意I裏的元素x 都會有mi<=f(x)<=ma, 所以叫;
. 但這並不完全等價于這個定理 因爲該定理是說 所有的[mi,ma]都有原像, 即值域就等於[mi,ma] 而不是[mi,ma]的真子集;

@DELI;

連續函數 一定滿足介值定理, 但反之不然, 比如分段函數x+1, [-1,0]; x-1, [0,1] 該函數在[0,1]的值域是[-1,1] 是個區間 所以滿足介值定理, 但是他不是連續函數;

错误

仔细理解* f ( I ) f(I) f(I)这个值域集合, 是个区间的意思;
. 即判断一个集合 是否是
区间*, 比如{1,2}就不是区间[1,2], 区间[1,2]是表示所有的{x | 1<=x<=2}的实数 他是无穷个的; (因此 比如f(x) = {1, x<0; 2, x>=0} 他在[-1,1]上 不满足介值定理, 但他在[0,1]上 满足介值定理);

应用

达布定理: LINK: https://editor.csdn.net/md/?not_checkout=1&articleId=131417635;

极值定理 Extreme value theorem

定义

前提: 设函数 f f f闭区间 I I I上是连续的;
结论: 像集 f ( I ) f(I) f(I) 一定存在最大元与最小元 (等价表述: 函数在闭区间 I I I上存在最大最小值);

解释

从定义可知 他明明讨论的是最值 但为什么命名为极值呢?
. 我觉得, 因为函数的最值点 还有个等价的名字 就是全局极值点, 所以官方都叫做极值定理 (叫做最值定理可能更好吧…)

性质

他是介值定理的必要条件, 即介值定理 已经隐含了该定理, 因此 介值定理完全可以替代他;

零点定理 Bolzano's theorem

定义

前提: 设函数 f f f闭区间 [ a , b ] [a,b] [a,b]上是连续的, 且 f ( a ) ∗ f ( b ) < 0 f(a)*f(b)<0 f(a)f(b)<0;
结论: ∃ x ∈ ( a , b ) , f ( x ) = 0 \exist x \in (a,b), f(x)= 0 x(a,b),f(x)=0;

性质

他是介值定理的必要条件, 即介值定理 已经隐含了该定理, 因此 介值定理完全可以替代他;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值