【学习资料】心田花开:初二语文下册《孔乙己》知识点

本文分享了初二语文下册《孔乙己》的课文知识点,详细介绍了鲁迅及其作品背景,重点字词解析,以及对孔乙己形象和旁人态度的深入分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

心田花开分享初二语文下册《孔乙己》课文知识点,本篇课文是鲁迅小说集《呐喊》中的一篇小说,也是该篇小说的主人公。心田花开为大家整理了孔乙己知识点,希望对大家有帮助!
在这里插入图片描述
一.原文【省略】
二.走近作者
鲁迅(1881.9.25~1936.10.19),浙江绍兴人,原名周樟寿,后改名周树人,字豫才、豫亭,浙江绍兴人,出身于封建官僚家庭。
鲁迅是他的笔名,是我国伟大的无产阶级文学家、思想家、革命家。
1918年5月,首次用“鲁迅”的笔名,发表中国现代文学史上第一篇白话小说《狂人日记》,奠定了新文学的基石,后与《阿Q正传》、《药》、《故乡》等小说名篇一同收入小说集《呐喊》。
毛泽东主席评价鲁迅为伟大的无产阶级文学家、思想家、革命家、评论家、作家,是中国文化革命的主将、中华民族精神的发扬人。
三.重点字词
茴香豆(huí) 唠叨(lāo dǎo) 羼水(chàn) 笔砚(yàn)
拭去(shì) 蘸酒(zhàn) 蒲包(pú) 舀水(yǎo)
跌断(diē) 颓唐(tuí) 附和(hè) 不屑置辩(xiè)
咸亨酒店(hēng) 荤菜(hūn) 惋惜(wǎn)
阔绰(chuò) 涨红(zhàng) 绽出(zhàn) 哄笑(hōng)
间或(jiàn) 着了慌(zháo) 打折(shé) 门槛(kǎn)
四.课后练习
1、(1)《孔乙己》中故事发生的年代是(),地点在(),是第()人称的写法,小说中的“我”是()。
(2)小说结尾写道:“我到现在终于没有见——大约孔乙己的确死了。”其中“大约”“的确”都是 词。“大约”是()的意思,说明(),“的确”是()的意思,是根据()得出的结论。这两个看来似乎矛盾的词,十分含蓄而深刻地表达了() 。
2、从“不一会,他(孔乙己)喝完酒,便又在旁人的说笑声中,坐看用这手慢慢走去了”这句话分析人物,可看出:
孔乙己:
旁人:
五.答案
1、(1)二十多年前 鲁镇咸亨酒店 小说中的线索人物
(2)副 推测,不肯定 没有人确切知道孔乙己的死活 肯定无疑 孔乙己的遭遇,特别是最后一次出场的惨状 孔乙己悲惨的结局
2、孔乙己:这个一直供人开心的笑料,命运更加悲惨
旁人:冷酷无情,麻木不仁。
心田花开分享的《孔乙己》知识点的全部内容就是这些,不知道大家是否已经都掌握了呢?预祝大家以更好的学习,取得优异的成绩。

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值