POJ 3468 A Simple Problem with Integers(线段树+延迟标记 维护区间和)

题目链接:http://poj.org/problem?id=3468

解题思路:区间修改,区间求和

求和没问题,区间修改如果要一个个改那么复杂度又变回O(N),那么要这个线段树干嘛呢。

所以用lazy[]数组标记,当下一次要用到被标记节点维护的子区间时,lazy会被下放,保证两个子区间的区间和正确

通俗的说:用到多深,下放多深,复杂度O(logN)

代码

#include<cstdio>
#define ll long long
#define lson rt<<1,l,m
#define rson rt<<1|1,m+1,r
#define mid int m=l+r>>1

const int N = 1e5+5;

ll tree[N<<2],lazy[N<<2];

void push_up(int rt)
{
    tree[rt] = tree[rt<<1] + tree[rt<<1|1];
}

void push_down(int rt,int len)
{                                       ///假设区间大小为5,那么应该左子树3,右2  
    tree[rt<<1] += lazy[rt]*(len-len/2);///5-5/2=3
    tree[rt<<1|1] += lazy[rt]*(len/2);///2
    lazy[rt<<1] += lazy[rt];
    lazy[rt<<1|1] += lazy[rt];
    lazy[rt] = 0;
}

void update(int L,int R,ll x,int rt,int l,int r)
{
    if (L<=l && r<=R){
        tree[rt] += x*(r-l+1);
        lazy[rt] += x;
        return ;
    }
    if (lazy[rt]) push_down(rt,r-l+1);
    mid;
    if (L<=m) update(L,R,x,lson);
    if (R>m) update(L,R,x,rson);
    push_up(rt);
}

ll query(int L,int R,int rt,int l,int r)
{
    if (L<=l && r<=R){
        return tree[rt];
    }
    ll ans =0;
    if (lazy[rt]) push_down(rt,r-l+1);
    mid;
    if (L<=m) ans += query(L,R,lson);
    if (R>m) ans += query(L,R,rson);
    return ans;
}

void build(int rt,int l,int r)
{
    if (l==r){
        scanf("%lld",tree+rt);
        return ;
    }
    mid;
    build(lson);
    build(rson);
    push_up(rt);
}

int main()
{
    int n,m;
    scanf("%d %d",&n,&m);
    build(1,1,n);
    char op[2];
    int x,y;
    ll z;
    while (m--){
        scanf("%s %d %d",op,&x,&y);
        if (op[0]=='Q'){
            printf("%lld\n",query(x,y,1,1,n));
        }
        else{
            scanf("%lld",&z);
            update(x,y,z,1,1,n);
        }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值