Mask_RCNN报错合集

本文解决了两个关于Mask_RCNN模型的问题:一是ValueError错误,通过修改Lambda层为自定义层解决;二是OSError错误,原因是预训练权重文件mask_rcnn_coco.h5不完整,解决方案是重新下载完整的权重文件。

1. ValueError: The following Variables were created within a Lambda layer (anchors)

解决:修改model.py的

anchors = KL.Lambda(lambda x: tf.Variable(anchors), name="anchors")(input_image)

为:

anchor_layer = AnchorsLayer(name="anchors")
            anchors = anchor_layer(anchors)

并在此之前加入函数定义:

class AnchorsLayer(tf.keras.layers.Layer):
    def __init__(self, name="anchors", **kwargs):
        super(AnchorsLayer, self).__init__(name=name, **kwargs)

    def call(self, anchor):
        return anchor
    
    def get_config(self) :
        config = super(AnchorsLayer, self).get_config()
        return config

参考:https://github.com/matterport/Mask_RCNN/issues/1930

2. File “h5py/h5f.pyx”, line 88, in h5py.h5f.open

OSError: Unable to open file (truncated file: eof = 29458432, sblock->base_addr = 0, stored_eof = 257557808)

原因:mask_rcnn_coco.h5不完整
解决:重新下载mask_rcnn_coco.h5文件,点击下载

<think>好的,我现在需要帮助用户解决如何正确加载预训练权重文件cascade_mask_rcnn_swin_small.pth到Cascade Mask R-CNN模型中。首先,我得回顾一下用户提供的引用内容,特别是引用[1]、[2]和[3]中的信息,看看是否有相关的步骤或注意事项。 用户提到他们在使用自定义数据集时遇到问题,需要禁用mask相关部分,因为他们的数据集只有bbox标注。这可能意味着在加载预训练模型时,如果预训练模型原本包含mask_head,而用户现在禁用了,可能会导致权重加载失败,出现KeyError。例如,引用[1]中提到的修改配置文件中的use_maskmask_roi_extractor和mask_head,以及数据管道中的gt_masks。所以用户在加载预训练权重时,需要确保模型结构与权重文件的结构匹配,否则可能会有不匹配的键名。 接下来,用户提供的引用[2]提到在训练时,将SyncBN改为BN,特别是在单卡训练的情况下。这可能影响模型参数的加载,特别是如果预训练权重是在多卡环境下训练的,使用了SyncBN,而当前模型改成了BN层,这可能导致层名称不匹配,从而加载失败。因此,用户需要注意模型定义中的BN层是否与权重文件中的层名称一致。 引用[3]解释了Cascade R-CNN的基本原理,提到它是基于Faster R-CNN的级联结构。这可能意味着模型结构较为复杂,包含多个阶段的检测头,因此在加载权重时需要确保每个阶段的参数正确对应。 用户的问题是如何加载预训练权重。首先,我需要考虑以下几点: 1. **模型配置是否正确**:用户需要确保他们的配置文件(如cascade_mask_rcnn_swin_small_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco.py)已经正确修改,特别是禁用了mask相关的部分(如引用[1]所述),并且可能将SyncBN改为BN(如引用[2]所述)。 2. **权重文件与模型结构的匹配性**:如果预训练权重是在包含mask_head的情况下训练的,而用户禁用了mask_head,直接加载会导致KeyError,因为权重文件中存在mask_head的参数,而当前模型没有这部分结构。因此,用户需要过滤掉这些不匹配的键。 3. **加载方法**:通常,在MMDetection框架中,可以使用init_model函数或load_from参数来加载预训练权重。用户可能需要使用strict=False参数来忽略不匹配的键。 根据引用[4]中的KeyError: ‘Cascade Mask R-CNN,可能用户在之前的尝试中遇到了结构不匹配的问题,比如模型定义和权重文件中的层名称不一致。因此,正确的步骤应该是: - 修改配置文件,禁用mask相关部分,如use_mask=False,移除mask_head和mask_roi_extractor。 - 确保模型结构正确,比如将SyncBN改为BN(单卡训练时)。 - 使用load_from参数加载预训练权重,并设置strict=False以跳过不存在的键。 同时,用户可能需要检查预训练权重是否与Swin Transformer Small变体兼容,确保backbone部分的名称匹配。例如,Swin Transformer的不同变体(tiny, small, base)可能有不同的层结构,需要对应的预训练权重。 可能的错误点包括未正确修改配置文件中的mask部分,导致模型结构与权重不匹配;或者在单卡训练时未将SyncBN改为BN,导致参数名称不一致。此外,用户可能在加载权重时未使用strict=False,导致程序因找不到对应的键而报错。 总结步骤应该是:配置正确模型结构,加载预训练权重时允许不严格匹配,并处理可能的BN层同步问题。同时,参考引用[2]中的训练调整,确保模型定义与权重文件一致。</think>以下是加载预训练权重的完整流程及注意事项: ### 步骤详解 1. **配置文件调整** - 在`cascade_mask_rcnn_swin_small_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco.py`中: ```python # 禁用mask相关模块 model = dict( use_mask=False, # 改为False mask_roi_extractor=None, # 注释或删除 mask_head=None, # 注释或删除 train_cfg=dict( rcnn=dict(mask_size=0)) # 避免mask分支参数残留 ) # 单卡训练时修改SyncBN为BN norm_cfg = dict(type='BN', requires_grad=True) ``` - 数据管道中移除`gt_masks`引用[^1]。 2. **权重加载方法** ```python from mmdet.apis import init_detector config_file = 'configs/swin/cascade_mask_rcnn_swin_small_xxx.py' checkpoint_file = 'cascade_mask_rcnn_swin_small.pth' # 关键参数:strict=False 允许参数不严格匹配 model = init_detector(config_file, checkpoint_file, device='cuda:0', strict=False) ``` 3. **验证加载结果** - 检查日志输出中`missing keys`是否仅包含mask相关参数: ``` Missing keys: ['mask_head...', 'roi_head.mask_...'] Unexpected keys: None ``` - 若出现backbone相关参数缺失,需检查Swin Transformer的预训练权重是否包含在配置中引用[^3]。 ### 常见问题解决 - **KeyError: ‘mask_head’** 确认配置文件中已完全移除mask相关定义,包括`mask_roi_extractor`和`mask_head`的残留引用[^1]。 - **BN层参数不匹配** 若预训练权重使用SyncBN,需在配置文件中添加: ```python norm_eval = False # 允许BN层参数更新 ``` - **Backbone权重加载失败** Swin Transformer需单独加载backbone预训练权重: ```python # 分步加载 model.load_state_dict(torch.load(checkpoint), strict=False) model.backbone.load_state_dict(torch.load('swin_small_patch4_window7_224.pth')) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值