Heatmap-based Vanishing Point boosts Lane Detection 论文翻译

本文提出了一种基于热图回归的车道线检测方法,利用ERFNet提取特征并结合车道线检测结果预测消失点。实验在CULane数据集上展示了新方法在复杂光照条件下的优势,显著提升了检测精度。关键词:车道线检测、消失点检测、热图回归、自动驾驶、ERFNet融合

基于热力图消失点增强车道线检测

论文:Heatmap-based Vanishing Point boosts Lane Detection

摘要

基于视觉的车道线检测(LD)是自动驾驶技术的关键部分,也是一个具有挑战性的问题。消失点作为场景构成的重要约束条件之一,可以为车道线检测提供有用的线索。本文提出了一种新的高精度车道线检测多任务融合网络体系结构。首先,以ERFNet为骨干,提取道路图像的层次特征;然后,利用图像分割方法检测车道线。最后,结合车道线检测的输出和主干网提取的层次特征,利用热图回归对车道消失点进行预测。利用公共CULane数据集对所提出的融合策略进行了测试。实验结果表明,该方法的车道检测精度优于最新的SOTA方法。
**关键词:**车道线检测;消失点检测;ERFNet;热图回归

一、 介绍

近年来,自动驾驶技术[1]已成为人工智能领域最热门的投资方向之一。车道检测作为自动驾驶系统的重要组成部分,受到了越来越多的研究者的关注。目前,在简单的情况下,车道检测算法的性能是可以接受的。然而,在光线暗淡、阴影等恶劣环境[3]下,车道检测算法的性能明显下降。

现有的车道检测算法可分为两类:基于深度学习的车道线检测算法传统的车道线检测算法
传统的算法首先提取手工特征,然后对手工特征进行后处理,最后得到车道估计结果。常用的手工特征包括颜色特征[4]、线段检测(LSD)特征[5]、霍夫变换特征[6]等。传统车道线检测算法有两个缺点:1)手工提取特征是场景的浅层特征,其表现能力有限,易受场景噪声的影响;2)后处理方法的特征集成能力也受到限制。因此,非深度学习的车道线检测方法的性能并不理想。
近年来,深度学习技术在图像分析领域取得了一系列重大突破。因此,研究者试图利用DL技术来解决复杂

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值