第八章-第一节-重极限 连续 偏导数 全微分

本章节深入探讨了二元函数的重极限、连续性概念,通过实例解释如何求解函数的极限。接着,介绍了多元函数的偏导数及其在可微性中的作用。定理2和定理3揭示了可微性的充分条件,强调了偏导数连续的重要性。最后,阐述了连续、可偏导和可微性之间的紧密联系。
摘要由CSDN通过智能技术生成

第一节 重极限、连续、偏导数、全微分

1、二元函数

2、二元函数的极限

image-20210713232705186

例1

image-20210713232733857

使用绝对值趋向于0,然后夹逼即可得到结论。

例2

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-HrJV2Dsg-1626596981601)(C:/Users/Einstein/AppData/Roaming/Typora/typora-user-images/image-20210714075631651.png)]

3、多元函数的连续性

只要判断函数在一点上的连续性,特别是分段函数在分界点的连续性

1)连续的概念:趋近于该点的极限等于该点的函数值

2)连续函数的性质:

image-20210714080538829

4、偏导数

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值