对比学习(联邦相关)--持续更新

文章探讨了对比学习在视觉特征表示中的应用,特别是无监督和自我监督的方法,如MoCo和CMC。同时,提到了联邦学习在保护数据隐私方面的贡献,如FederatedUnsupervisedRepresentationLearning,强调了这些技术在不依赖大量标注数据的情况下提升模型性能的能力。
摘要由CSDN通过智能技术生成

对比学习方法——来自联邦对比学习

自监督学习

  1. Jing L, Tian Y. Self-supervised visual feature learning with deep neural networks: A survey[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 43(11): 4037-4058.(谷歌引用1202)
  2. Grill J B, Strub F, Altché F, et al. Bootstrap your own latent-a new approach to self-supervised learning[J]. Advances in neural information processing systems, 2020, 33: 21271-21284.(谷歌引用3603)
    以下四篇文章在视觉表征方面取得了先进的成果
  3. Chen T, Kornblith S, Norouzi M, et al. A simple framework for contrastive learning of visual representations[C]//International conference on machine learning. PMLR, 2020: 1597-1607.(谷歌引用9056)
  4. Chen T, Kornblith S, Swersky K, et al. Big self-supervised models are strong semi-supervised learners[J]. Advances in neural information processing systems, 2020, 33: 22243-22255.(谷歌引用1399)
  5. He K, Fan H, Wu Y, et al. Momentum contrast for unsupervised visual representation learning[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 9729-9738.(谷歌引用6463)
  6. Misra I, Maaten L. Self-supervised learning of pretext-invariant representations[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 6707-6717.(谷歌引用1040)
  7. Chen T, Kornblith S, Norouzi M, et al. A simple framework for contrastive learning of visual representations[C]//International conference on machine learning. PMLR, 2020: 1597-1607.典型的对比学习框架(谷歌引用量9056)
  8. Sohn K. Improved deep metric learning with multi-class n-pair loss objective[J]. Advances in neural information processing systems, 2016, 29.对比损失定义(谷歌引用1628)
  9. Oord A, Li Y, Vinyals O. Representation learning with contrastive predictive coding[J]. arXiv preprint arXiv:1807.03748, 2018.对比学习框架CPC(谷歌引用量4651)
  10. Tian Y, Krishnan D, Isola P. Contrastive multiview coding[C]//Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI 16. Springer International Publishing, 2020: 776-794.对比学习框架CMC(谷歌引用量1613)
  11. He K, Fan H, Wu Y, et al. Momentum contrast for unsupervised visual representation learning[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 9729-9738.对比学习框架MoCo(谷歌引用量6463)
  12. Zhang F, Kuang K, You Z, et al. Federated unsupervised representation learning[J]. arXiv preprint arXiv:2010.08982, 2020.联邦无监督对比学习(谷歌引用量59)
  13. Chen T, Kornblith S, Norouzi M, et al. A simple framework for contrastive learning of visual representations[C]//International conference on machine learning. PMLR, 2020: 1597-1607. 对比学习框架(谷歌引用量9151)
联邦学习是一种分布式机器学习技术,它允许模型训练过程在各个数据拥有者本地设备上进行,同时保持了数据的安全性和隐私性。联邦学习相比传统的集中式机器学习有以下几个优势: 1. **保护用户数据隐私**:在传统机器学习过程中,为了构建更好的模型,通常需要将数据集中到单一位置进行处理分析,这可能导致用户数据泄露的风险。而联邦学习通过让数据保留在本地设备上,并在不共享原始数据的情况下进行模型训练,显著提高了用户数据的隐私安全。 2. **提高模型性能**:由于联邦学习可以在本地对数据进行预处理和特征选择,再聚合结果进行模型训练,这种方式能够充分利用本地数据的多样性,帮助模型更好地捕获局部特征,进而提升整体模型的性能和泛化能力。 3. **适应复杂的数据环境**:联邦学习特别适用于处理敏感、私密的数据集,比如医疗记录、个人偏好等。在这些领域,数据往往受到严格的法规限制,无法轻易移动或共享。联邦学习允许这些敏感数据的“可用不可见”,促进了在遵守法律框架的前提下利用数据价值的可能性。 4. **增强可解释性和透明度**:在联邦学习框架下,模型训练的过程更加透明,因为模型不需要访问所有参与者的原始数据。这有助于建立信任,尤其是在金融、健康照护等领域,决策的透明度对于合规和公众接受至关重要。 5. **降低数据中心压力**:随着数据量的不断增加,处理大规模数据集所需的计算资源也日益庞大。联邦学习通过分散计算任务至各个数据持有方的终端设备,减轻了集中式数据中心的压力,同时也降低了数据传输成本。 6. **支持联盟网络结构**:联邦学习非常适合于联盟学习场景,即多个机构或组织合作共同训练模型,每个参与者都拥有其特定领域的数据。这种方式鼓励跨行业知识共享,促进创新和发展,而不侵犯各自的商业利益。 总之,联邦学习不仅提高了数据安全性,还能够在保护用户隐私的同时提供高性能的模型训练,尤其适合在数据受限和高度监管的环境中应用。它代表了机器学习未来发展的方向之一,有望在未来大数据时代发挥重要作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值