1 梯度下降
1.1 机器学习中为什么需要梯度下降
梯度下降是机器学习中常见优化算法之一,梯度下降法有以下几个作用:
(1)梯度下降是迭代法的一种,可以用于求解最小二乘问题。
(2)在求解机器学习算法的模型参数,即无约束优化问题时,主要有梯度下降法(Gradient Descent)和最小二乘法。
(3)在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。
(4)如果我们需要求解损失函数的最大值,可通过梯度上升法来迭代。梯度下降法和梯度上升法可相互转换。
(5)在机器学习中,梯度下降法主要有随机梯度下降法和批量梯度下降法。
1.2 梯度下降法缺点
梯度下降法缺点有以下几点:
(1)靠近极小值时收敛速度减慢。
(2)直线搜索时可能会产生一些问题。
(3)可能会“之字形”地下降。
梯度概念也有需注意的地方:
(1)梯度是一个向量,即有方向有大小。
(2)梯度的方向是最大方向导数的方向。
(3)梯度的值是最大方向导数的值。
1.3 梯度下降法直观理解
梯度下降法经典图示如下图2.7所示:
图2.7 梯度下降法经典图示
形象化举例,由上图2.7所示,假如最开始,我们在一座大山上的某处位置,因为到处都是陌生的,不知道下山的路,所以只能摸索着根据直觉,走一步算一步,在此过程中,每走到一个位置的时候,都会求解当前位置的梯度,沿着梯度的负方向,也就是当前最陡峭的位置向下走一步,然后继续求解当前位置梯度,向这一步所在位置沿着最陡峭最易下山的位置走一步。不断循环求梯度,就这样一步步地走下去,一直走到我们觉得已经到了山脚。当然这样走下去,有可能我们不能走到山脚,而是到了某一个局部的山势低处。
由此,从上面的解释可以看出,梯度下降不一定能够找到全局的最优解,有可能是一个局部的最优解。当然,如果损失函数是凸函数,梯度下降法得到的解就一定是全局最优解。
核心思想归纳:
(1)初始化参数,随机选取取值范围内的任意数;
(2)迭代操作:
a)计算当前梯度;
b)修改新的变量;
c)计算朝最陡的下坡方向走一步;
d)判断是否需要终止,如否,返回a);
(3)得到全局最优解或者接近全局最优解。
1.4 梯度下降法算法描述
梯度下降法算法步骤如下:
(1)确定优化模型的假设函数及损失函数。
举例,对于线性回归,假设函数为:
h
θ
(
x
1
,
x
2
,
.
.
.
,
x
n
)
=
θ
0
+
θ
1
x
1
+
.
.
.
+
θ
n
x
n
h_\theta(x_1,x_2,...,x_n)=\theta_0+\theta_1x_1+...+\theta_nx_n
hθ(x1,x2,...,xn)=θ0+θ1x1+...+θnxn
其中,
θ
i
,
x
i
(
i
=
0
,
1
,
2
,
.
.
.
,
n
)
\theta_i,x_i(i=0,1,2,...,n)
θi,xi(i=0,1,2,...,n)分别为模型参数、每个样本的特征值。
对于假设函数,损失函数为:
J
(
θ
0
,
θ
1
,
.
.
.
,
θ
n
)
=
1
2
m
∑
j
=
0
m
(
h
θ
(
x
0
(
j
)
,
x
1
(
j
)
,
.
.
.
,
x
n
(
j
)
)
−
y
j
)
2
J(\theta_0,\theta_1,...,\theta_n)=\frac{1}{2m}\sum^{m}_{j=0}(h_\theta (x^{(j)}_0 ,x^{(j)}_1,...,x^{(j)}_n)-y_j)^2
J(θ0,θ1,...,θn)=2m1j=0∑m(hθ(x0(j),x1(j),...,xn(j))−yj)2
(2)相关参数初始化。
主要初始化
θ
i
{\theta}_i
θi、算法迭代步长${\alpha}
、终止距离
、终止距离
、终止距离{\zeta}
。初始化时可以根据经验初始化,即
。初始化时可以根据经验初始化,即
。初始化时可以根据经验初始化,即{\theta}
初始化为
0
,步长
初始化为0,步长
初始化为0,步长{\alpha}
初始化为
1
。当前步长记为
初始化为1。当前步长记为
初始化为1。当前步长记为{\varphi}_i $。当然,也可随机初始化。
(3)迭代计算。
1)计算当前位置时损失函数的梯度,对${\theta}_i $,其梯度表示为:
∂
∂
θ
i
J
(
θ
0
,
θ
1
,
.
.
.
,
θ
n
)
=
1
2
m
∑
j
=
0
m
(
h
θ
(
x
0
(
j
)
,
x
1
(
j
)
,
.
.
.
,
x
n
(
j
)
)
−
y
j
)
2
\frac{\partial}{\partial \theta_i}J({\theta}_0,{\theta}_1,...,{\theta}_n)=\frac{1}{2m}\sum^{m}_{j=0}(h_\theta (x^{(j)}_0 ,x^{(j)}_1,...,x^{(j)}_n)-y_j)^2
∂θi∂J(θ0,θ1,...,θn)=2m1j=0∑m(hθ(x0(j),x1(j),...,xn(j))−yj)2
2)计算当前位置下降的距离。
φ
i
=
α
∂
∂
θ
i
J
(
θ
0
,
θ
1
,
.
.
.
,
θ
n
)
{\varphi}_i={\alpha} \frac{\partial}{\partial \theta_i}J({\theta}_0,{\theta}_1,...,{\theta}_n)
φi=α∂θi∂J(θ0,θ1,...,θn)
3)判断是否终止。
确定是否所有
θ
i
{\theta}_i
θi梯度下降的距离
φ
i
{\varphi}_i
φi都小于终止距离
ζ
{\zeta}
ζ,如果都小于
ζ
{\zeta}
ζ,则算法终止,当然的值即为最终结果,否则进入下一步。
4)更新所有的
θ
i
{\theta}_i
θi,更新后的表达式为:
θ
i
=
θ
i
−
α
∂
∂
θ
i
J
(
θ
0
,
θ
1
,
.
.
.
,
θ
n
)
{\theta}_i={\theta}_i-\alpha \frac{\partial}{\partial \theta_i}J({\theta}_0,{\theta}_1,...,{\theta}_n)
θi=θi−α∂θi∂J(θ0,θ1,...,θn)
θ
i
=
θ
i
−
α
1
m
∑
j
=
0
m
(
h
θ
(
x
0
(
j
)
,
x
1
(
j
)
,
.
.
.
,
x
n
(
j
)
)
−
y
j
)
x
i
(
j
)
\theta_i=\theta_i - \alpha \frac{1}{m} \sum^{m}_{j=0}(h_\theta (x^{(j)}_0 ,x^{(j)}_1,...,x^{(j)}_n)-y_j)x^{(j)}_i
θi=θi−αm1j=0∑m(hθ(x0(j),x1(j),...,xn(j))−yj)xi(j)
5)令上式
x
0
(
j
)
=
1
x^{(j)}_0=1
x0(j)=1,更新完毕后转入1)。
由此,可看出,当前位置的梯度方向由所有样本决定,上式中
1
m
\frac{1}{m}
m1、
α
1
m
\alpha \frac{1}{m}
αm1 的目的是为了便于理解。
1.5 如何对梯度下降法进行调优
实际使用梯度下降法时,各项参数指标不能一步就达到理想状态,对梯度下降法调优主要体现在以下几个方面:
(1)算法迭代步长
α
\alpha
α选择。
在算法参数初始化时,有时根据经验将步长初始化为1。实际取值取决于数据样本。可以从大到小,多取一些值,分别运行算法看迭代效果,如果损失函数在变小,则取值有效。如果取值无效,说明要增大步长。但步长太大,有时会导致迭代速度过快,错过最优解。步长太小,迭代速度慢,算法运行时间长。
(2)参数的初始值选择。
初始值不同,获得的最小值也有可能不同,梯度下降有可能得到的是局部最小值。如果损失函数是凸函数,则一定是最优解。由于有局部最优解的风险,需要多次用不同初始值运行算法,关键损失函数的最小值,选择损失函数最小化的初值。
(3)标准化处理。
由于样本不同,特征取值范围也不同,导致迭代速度慢。为了减少特征取值的影响,可对特征数据标准化,使新期望为0,新方差为1,可节省算法运行时间。
1.6 随机梯度和批量梯度区别
随机梯度下降(SGD)和批量梯度下降(BGD)是两种主要梯度下降法,其目的是增加某些限制来加速运算求解。
下面通过介绍两种梯度下降法的求解思路,对其进行比较。
假设函数为:
h
θ
(
x
0
,
x
1
,
.
.
.
,
x
3
)
=
θ
0
x
0
+
θ
1
x
1
+
.
.
.
+
θ
n
x
n
h_\theta (x_0,x_1,...,x_3) = \theta_0 x_0 + \theta_1 x_1 + ... + \theta_n x_n
hθ(x0,x1,...,x3)=θ0x0+θ1x1+...+θnxn
损失函数为:
J
(
θ
0
,
θ
1
,
.
.
.
,
θ
n
)
=
1
2
m
∑
j
=
0
m
(
h
θ
(
x
0
j
,
x
1
j
,
.
.
.
,
x
n
j
)
−
y
j
)
2
J(\theta_0, \theta_1, ... , \theta_n) = \frac{1}{2m} \sum^{m}_{j=0}(h_\theta (x^{j}_0 ,x^{j}_1,...,x^{j}_n)-y^j)^2
J(θ0,θ1,...,θn)=2m1j=0∑m(hθ(x0j,x1j,...,xnj)−yj)2
其中,
m
m
m为样本个数,
j
j
j为参数个数。
1、 批量梯度下降的求解思路如下:
a) 得到每个$ \theta $对应的梯度:
∂
∂
θ
i
J
(
θ
0
,
θ
1
,
.
.
.
,
θ
n
)
=
1
m
∑
j
=
0
m
(
h
θ
(
x
0
j
,
x
1
j
,
.
.
.
,
x
n
j
)
−
y
j
)
x
i
j
\frac{\partial}{\partial \theta_i}J({\theta}_0,{\theta}_1,...,{\theta}_n)=\frac{1}{m}\sum^{m}_{j=0}(h_\theta (x^{j}_0 ,x^{j}_1,...,x^{j}_n)-y^j)x^{j}_i
∂θi∂J(θ0,θ1,...,θn)=m1j=0∑m(hθ(x0j,x1j,...,xnj)−yj)xij
b) 由于是求最小化风险函数,所以按每个参数 $ \theta $ 的梯度负方向更新 $ \theta_i $ :
θ
i
=
θ
i
−
1
m
∑
j
=
0
m
(
h
θ
(
x
0
j
,
x
1
j
,
.
.
.
,
x
n
j
)
−
y
j
)
x
i
j
\theta_i=\theta_i - \frac{1}{m} \sum^{m}_{j=0}(h_\theta (x^{j}_0 ,x^{j}_1,...,x^{j}_n)-y^j)x^{j}_i
θi=θi−m1j=0∑m(hθ(x0j,x1j,...,xnj)−yj)xij
c) 从上式可以注意到,它得到的虽然是一个全局最优解,但每迭代一步,都要用到训练集所有的数据,如果样本数据很大,这种方法迭代速度就很慢。
相比而言,随机梯度下降可避免这种问题。
2、随机梯度下降的求解思路如下:
a) 相比批量梯度下降对应所有的训练样本,随机梯度下降法中损失函数对应的是训练集中每个样本的粒度。
损失函数可以写成如下这种形式,
J
(
θ
0
,
θ
1
,
.
.
.
,
θ
n
)
=
1
m
∑
j
=
0
m
(
y
j
−
h
θ
(
x
0
j
,
x
1
j
,
.
.
.
,
x
n
j
)
)
2
=
1
m
∑
j
=
0
m
c
o
s
t
(
θ
,
(
x
j
,
y
j
)
)
J(\theta_0, \theta_1, ... , \theta_n) = \frac{1}{m} \sum^{m}_{j=0}(y^j - h_\theta (x^{j}_0 ,x^{j}_1,...,x^{j}_n))^2 = \frac{1}{m} \sum^{m}_{j=0} cost(\theta,(x^j,y^j))
J(θ0,θ1,...,θn)=m1j=0∑m(yj−hθ(x0j,x1j,...,xnj))2=m1j=0∑mcost(θ,(xj,yj))
b)对每个参数 $ \theta$ 按梯度方向更新 $ \theta$:
θ
i
=
θ
i
+
(
y
j
−
h
θ
(
x
0
j
,
x
1
j
,
.
.
.
,
x
n
j
)
)
\theta_i = \theta_i + (y^j - h_\theta (x^{j}_0, x^{j}_1, ... ,x^{j}_n))
θi=θi+(yj−hθ(x0j,x1j,...,xnj))
c) 随机梯度下降是通过每个样本来迭代更新一次。
随机梯度下降伴随的一个问题是噪音较批量梯度下降要多,使得随机梯度下降并不是每次迭代都向着整体最优化方向。
小结:
随机梯度下降法、批量梯度下降法相对来说都比较极端,简单对比如下:
方法 | 特点 |
---|---|
批量梯度下降 | a)采用所有数据来梯度下降。 b)批量梯度下降法在样本量很大的时候,训练速度慢。 |
随机梯度下降 | a)随机梯度下降用一个样本来梯度下降。 b)训练速度很快。 c)随机梯度下降法仅仅用一个样本决定梯度方向,导致解有可能不是全局最优。 d)收敛速度来说,随机梯度下降法一次迭代一个样本,导致迭代方向变化很大,不能很快的收敛到局部最优解。 |
下面介绍能结合两种方法优点的小批量梯度下降法。
3、 小批量(Mini-Batch)梯度下降的求解思路如下
对于总数为
m
m
m个样本的数据,根据样本的数据,选取其中的
n
(
1
<
n
<
m
)
n(1< n< m)
n(1<n<m)个子样本来迭代。其参数
θ
\theta
θ按梯度方向更新
θ
i
\theta_i
θi公式如下:
θ
i
=
θ
i
−
α
∑
j
=
t
t
+
n
−
1
(
h
θ
(
x
0
j
,
x
1
j
,
.
.
.
,
x
n
j
)
−
y
j
)
x
i
j
\theta_i = \theta_i - \alpha \sum^{t+n-1}_{j=t} ( h_\theta (x^{j}_{0}, x^{j}_{1}, ... , x^{j}_{n} ) - y^j ) x^{j}_{i}
θi=θi−αj=t∑t+n−1(hθ(x0j,x1j,...,xnj)−yj)xij
1.7 各种梯度下降法性能比较
下表简单对比随机梯度下降(SGD)、批量梯度下降(BGD)、小批量梯度下降(Mini-batch GD)、和Online GD的区别:
BGD | SGD | Mini-batch GD | Online GD | |
---|---|---|---|---|
训练集 | 固定 | 固定 | 固定 | 实时更新 |
单次迭代样本数 | 整个训练集 | 单个样本 | 训练集的子集 | 根据具体算法定 |
算法复杂度 | 高 | 低 | 一般 | 低 |
时效性 | 低 | 一般 | 一般 | 高 |
收敛性 | 稳定 | 不稳定 | 较稳定 | 不稳定 |
BGD、SGD、Mini-batch GD,前面均已讨论过,这里介绍一下Online GD。
Online GD于Mini-batch GD/SGD的区别在于,所有训练数据只用一次,然后丢弃。这样做的优点在于可预测最终模型的变化趋势。
Online GD在互联网领域用的较多,比如搜索广告的点击率(CTR)预估模型,网民的点击行为会随着时间改变。用普通的BGD算法(每天更新一次)一方面耗时较长(需要对所有历史数据重新训练);另一方面,无法及时反馈用户的点击行为迁移。而Online GD算法可以实时的依据网民的点击行为进行迁移。