《信号与系统》第一章 信号与系统概述

1.1 什么是信号

现实世界中存在着大量信号,例如声音信号、光信号、温度信号等。那么,究竟什么是信号呢?从字面意思上来看,信号中“信”字代表着信息,而“号”字则代表着标志。信息是一个抽象的概念,而通过某种客观实在的标志,将抽象的信息实体化,这一标志便是信号。因此,信号是信息的载体,是信息传播、处理的物质基础。下面给出信号的定义:

信号是随时间变化的、用于表示信息的物理量

信号的种类繁多,在数字信号分析领域,根据信号作为时间函数的诸多性质,我们将信号大致分成以下几种:

  1. 确定性信号与随机信号
  2. 连续时间信号与离散时间信号
  3. 周期信号与非周期信号
  4. 因果信号与非因果信号
  5. 能量信号与功率信号

1.1.1 确定性信号与随机信号

当某一信号可以通过一个时间函数表示,并且可通过该时间函数确定任意指定时刻的函数值时,称该信号为确定性信号
当某一信号幅度未可预知但是其数值上服从一定统计特性时,称该信号为随机信号,又称不确定信号

一般来说, 确定性信号的取值均可通过计算得出,因此确定性信号中没有任何新信息,但随机信号不能通过确定的时间函数来描述,因此不能预测任何未来瞬时值,每一次观测都只是随机信号在其变动范围中的一种可能。与此同时,随机信号的数值变动服从统计规律。

1.1.2 连续时间信号与离散时间信号

模拟,是对客观实在事物的抽象、虚拟和模仿。大自然中绝大部分的信号从宏观上来看都是连续的,因此模拟信号作为对现实世界的抽象与模仿,无论在时间上还是数值上都是连续的。

连续时间信号(Continuous-Time Signal or CTS):信号在时间域上连续可变,其自变量常表示为t。
在这里插入图片描述

与模拟信号不同,离散信号在时间上都具有离散性。所谓离散,可以理解为"支离破散",离散的信号仅在一个数值的整数倍上有意义,而在这些最小值整数倍上的点之外没有意义,这便类似于小提琴与吉他的区别,吉他的品丝使得吉他弹奏出的声音固定在那些相对应的频率上,即使弹奏时手不按在品格上,手指对琴弦按压带来的琴弦对品丝的按压也必定会使弹奏出的声音落在该品格所对应的频率上;而没有品丝的小提琴演奏出的声音则是不固定的,所以即便经过调音的小提琴也会拉奏出非标准音。因此可以说将前者理解为离散的,而后者可理解为连续的。

离散时间信号(Discrete Time Signal or DTS):信号在时间域上离散,即时间域上只能从某个非连续集合中取值,时间域上除该集合之外均无定义,其自变量常表示为n。在这里插入图片描述

在这里插入图片描述

对比小提琴和吉他
品丝的添加使得吉他发出的声音相比前者更加离散化(图片来源于网络)

将连续时域上的自变量t通过某种规则转化为取值落在由整数倍基值nΔT组成的离散时域集合上的过程称为连续时域的离散化
t → t n = n Δ T t\rightarrow t_{n}=n\Delta T ttn=nΔT
x ( t ) → x [ n Δ T ] → x [ n ] x\left( t\right) \rightarrow x\left[ n\Delta T\right] \rightarrow x\left[ n\right] x(t)x[nΔT]x[n]

此时需要做进一步讨论的是离散时间信号在数值上的连续性问题,为了讨论方便,将离散时间信号分为广义离散时间信号和狭义离散时间信号两种。当某一信号在时间上离散时,便认定此信号为广义离散时间信号,不考虑其在数值上是否连续。反之,当考虑离散时间信号在数值上的连续性时,则认定在时间上离散、在数值上连续的信号为狭义离散信号。根据上述分类标准,广义离散时间信号包含了狭义离散时间信号和数字信号两种信号。

数字信号同样可以分为广义数字信号与狭义数字信号,广义数字信号对于数值量化后的取值不做规范,而狭义数字信号要求信号量化后的取值只能为0或1。在实际应用中,大部分电子信号都会采用二进制进行编码,所以电子领域中的数字信号常常指代狭义数字信号。

1.1.3 周期性信号与非周期信号

对于任意连续时间信号,如果存在一个最小的正值T,满足

x ( t ) = x ( t + m T ) ( m ∈ N ) x(t) = x(t+mT) (m∈N) x(t)=x(t+mT)(mN)

则称x(t)是T为周期,以ω0=2π/T为基本角频率的周期信号

相似地,对于任意离散时间信号,如果存在一个最小的正值N,满足

x [ n ] = x [ n + m N ] ( m ∈ N ) x[n] = x[n+mN] (m∈N) x[n]=x[n+mN](mN)

则称x[n]是N为周期,以Ω0=2π/N为基本角频率的周期信号

在周期函数中,把一个周期上的信号拓展到整个区间的过程称为信号的周期延拓,表达为:
X T ( t ) = ∑ m = − ∞ ∞ X ( t + m T ) ( 连 续 时 间 ) X_{T}(t)=\sum\limits_{m=-\infty}^{\infty}X(t+mT)(连续时间) XT(t)=m=X(t+mT)或者
X N [ n ] = ∑ m = − ∞ ∞ X [ n + m N ] ( 离 散 时 间 ) X_{N}[n]=\sum\limits_{m=-\infty}^{\infty}X[n+mN](离散时间) XN[n]=m=X[n+mN]
由此可知,周期性信号是由无数多个最小周期组成的,其中每个周期的时长相等、形状相同。需要注意的是,具有周期性的连续时间信号对应的离散时间信号不一定具有周期性,即使有周期性,两者的周期也可能不同,这是因为离散信号的自变量为某个数值的整数倍。如果经离散化的信号在原信号某周期的终点处没有定义,则该离散信号的周期会因此发生改变,

1.1.4 能量信号与功率信号

对于连续时间信号x(t),该信号的能量为:
E = ∫ − ∞ ∞ ∣ x ( t ) ∣ 2 d t E=\int _{-\infty }^{\infty }\left| x\left( t\right) \right| ^{2}dt E=x(t)2dt
该信号的功率为:
P = lim ⁡ T → ∞ 1 T ∫ − T 2 T 2 ∣ x ( t ) ∣ 2 d t P=\lim _{T\rightarrow \infty }\dfrac{1}{T}\int ^{\dfrac{T}{2}}_{-\dfrac{T}{2}}\left| x\left( t\right) \right| ^{2}dt P=TlimT12T2Tx(t)2dt
类似的,对于离散时间信号x[n],该信号的能量为:
E = ∑ n = − ∞ ∞ ∣ x [ n ] ∣ 2 E=\sum ^{\infty }_{n=-\infty }\left| x\left[ n\right] \right| ^{2} E=n=x[n]2
该信号的功率为:
P = lim ⁡ T → ∞ 1 2 N + 1 ∑ n = − N N ∣ x [ n ] ∣ 2 P=\lim _{T\rightarrow \infty }\dfrac{1}{2N+1}\sum ^{N}_{n=-N}\left| x\left[ n\right] \right| ^{2} P=Tlim2N+11n=NNx[n]2
如果信号的能量E满足0<E<∞,则该信号为能量有限信号能量信号
如果信号的平均功率P满足0<P<∞,则该信号为功率有限信号功率信号

需要注意的是,信号的能量与功率性质是一对互斥性质,因为时间总是无穷大,能量信号的总能量有限,所以其功率必定为零,而功率信号的功率有限,其能量一定无穷大。时间有限的非周期信号一般都是能量信号,而大部分时间无穷大的周期信号都是功率信号。

1.1.5 因果信号与非因果信号

顾名思义,因果信号在时域和数值上存在某种因果关系,当t<0时,信号x(t)数值上恒等于0,则称该信号为因果信号,反之则为非因果信号。将这一定义扩展至时域上的任意位置:当t<t0,x(t0)=0时,因为在t0左侧信号的数值均为零,只有右侧才有非零波形,所以称该信号为右边信号,反之则为左边信号。

1.2 什么是系统

相比于信号,系统的概念较为抽象,但是无论是计算机领域的操作系统、生态学领域的生态系统还是社会学中的社会系统,因此现实生活中处处都存在着各种各样的系统,不同领域对于系统的定义也各有不同。我国著名物理学家钱学森教授认为系统是由相互作用相互依赖的若干组成部分结合而成的,具有特定功能的有机整体,而且这个有机整体又是它从属的更大系统的组成部分。而在数字信号处理的角度,系统是将输入信号转化为输出信号的一系列运算的集合。系统也可以理解为一个信号转换器,能对激励作出相应的响应。

根据不同的性质,大致可以将系统分成一下几个种类:

  1. 因果系统与非因果系统
  2. 连续时间系统与离散时间系统
  3. 无记忆系统与记忆系统
  4. 线性系统与非线性系统
  5. 时变系统与时不变系统
  6. 稳定系统与不稳定系统

1.2.1 因果系统与非因果系统

与因果信号相似,当某系统在任意时刻的输出只与当前时刻之前时刻的输入有关,与未来输入无关,则该系统为因果系统。反之,当输出值与未来的输入有关时,该系统被称为非因果系统,由于当前时刻输出与未来时刻输入相关的系统在现实世界无法实现,因此因果系统也称为物理可实现系统

1.2.2 连续时间系统与离散时间系统

定义一个系统,该的输入输出均为连续时间信号,并且该系统内部不存在将连续时间信号转化为离散时间信号的过程,则称该系统为连续时间系统,数学上采用微分方程对其进行建模。

类似地,定义一个输入输出均为离散时间信号的系统,并且该系统内部不存在将离散时间信号转化为连续时间信号的过程,则称该系统为离散时间系统,数学上采用差分方程对其建模。

由连续时间系统和离散时间系统混合而成的系统称为混合系统,在实际应用中大部分系统都属于混合系统。

1.2.3 无记忆系统与记忆系统

若某系统的输出信号只取决于当前时刻的输入信号,与过去和未来的系统的状态无关,则称该系统为无记忆系统,无记忆系统因其只与当前时刻有关的瞬时特性,故亦称为瞬时系统。相反地,若某系统的输出信号既取决于当前时刻的输入信号,还受过去或未来的输入的影响,则称该系统为记忆系统,亦称为动态系统

1.2.4 线性系统与非线性系统

在数学上,线性函数有齐次性可加性两个基本性质,下面给出定义:

对于函数x2(t)和x3(t),如果有

x 1 ( t ) → y 1 ( t ) , x 2 ( t ) → y 2 ( t ) ⇒ x 1 ( t ) + x 2 ( t ) → y 1 ( t ) + y 2 ( t ) x_{1}(t)→y_{1}(t),x_{2}(t)→y_{2}(t)⇒x_{1}(t)+x_{2}(t)→y_{1}(t)+y_{2}(t) x1(t)y1(t)x2(t)y2(t)x1(t)+x2(t)y1(t)+y2(t)

则称信号x(t)具有可加性,对于信号x3(t),如果有

x 3 ( t ) → y 3 ( t ) ⇒ a x 3 ( t ) → a 3 y ( t ) x_{3}(t)→y_{3}(t)⇒ax_{3}(t)→a_{3}y(t) x3(t)y3(t)ax3(t)a3y(t)

则信号x(t)具有齐次性,同时满足齐次性和可加性的系统称为线性系统

实际工程应用中的系统通常由多种性质不同的元件组成,较为复杂。考虑引起系统响应的因素时,除了需要考虑系统的激励外,还需要考虑系统的储能,因此在进行线性系统响应分析时常常需要将响应分解成零输入响应零状态响应,分别对这些响应进行分析,再将其结合成原本的全响应。即为

y ( t ) = y z i ( t ) + y z s ( t ) y(t)=y_{zi}(t)+y_{zs}(t) y(t)=yzi(t)+yzs(t)

下面给出零输入响应和零状态响应的定义与解释:

零输入响应yzi(t): 当激励x(t)为零时,只由系统本身的初始状态产生的响应。
零状态响应yzs(t): 当系统初始状态为零时,只由激励产生的响应。

使用上述方法对相应进行分解必须保证系统和相应符合以下三个性质:

  1. 系统的响应能够分解为零输入响应和零状态响应;
  2. 系统的零状态响应与系统的激励输入满足线性关系;
  3. 系统的零输入响应与系统的初始状态满足线性关系。

1.2.5 时变系统与时不变系统

如果延迟输入激励,系统的响应上也产生一个相同的时延,则该系统属于时不变系统。也就是说时不变系统的激励和响应与产生激励的时间无关。即
x ( t − t 0 ) → y 1 ( t ) = y ( t − t 0 ) x\left( t-t_{0}\right) \rightarrow y_{1}\left( t\right) =y\left( t-t_{0}\right) x(tt0)y1(t)=y(tt0)
在实际应用中,由确定参数的电阻、电容和电感组成的电路就是一个时不变系统,在数学上采用常系数微分方程或常系数差分方程进行建模。

1.2.6 稳定系统与不稳定系统

如果对系统输入一个有界的激励,其响应也有界,则称该系统为稳定系统,即

∣ x ( t ) ∣ < A ⇒ ∣ y ( t ) ∣ < B |x(t)|<A ⇒ |y(t)|<B x(t)<Ay(t)<B

在实际的应用系统中,由于系统中存在储能元件,并且每个元件都存在惯性。这样当给定系统的输入时,输出量一般会在期望的输出量之间摆动。此时系统会从外界吸收能量。对于稳定的系统振荡是减幅的,而对于不稳定的系统,振荡是增幅的振荡。前者会平衡于一个状态,后者却会不断增大直到系统被损坏。

参考文献:
[1] 郑君里,杨为理,应启珩.信号与系统上下册(第二版).北京:高等教育出版社,2000年.
[2] 吴大正等.信号与线性系统分析.(第三版).北京:高等教育出版社,2000年.
[3] Alan V. Oppenheim,Alan S. Willsky.Signal and System.Second Edition.Pearson Education, Inc,1997.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值