矩阵分析-内积

2. 内积空间

原文:https://gitee.com/fakerlove/matrix

2.0 考试重点+例题

https://www.bilibili.com/read/cv3995642

重点内容

  • 内积空间的判定/证明

  • 柯西-许瓦兹不等式

  • 施密特正交化(求标准正交基)

  • 正交变换的判定/证明

  • 方程组的最小二乘解

  • 复数矩阵的对角化

    一些其他概念/定义:对角行矩阵,实对称矩阵,实反对称矩阵,厄米特矩阵,反厄米特矩阵,正交矩阵,酉矩阵。

2.0.1 求矩阵的特征值和矩阵的迹

这个就不举例了

一个 n × n n\times n n×n矩阵 A A A中主对角线(从左上方至右下方的对角线)上各元素的总和被称为 A A A的迹 t r A = ∑ i = 1 n a i i = λ 1 + ⋯ + λ n trA=\sum_{i=1}^na_{ii}=\lambda_1+\cdots+\lambda_n trA=i=1naii=λ1++λn

2.0.2 矩阵的秩的关系

r ( A ) + r ( B ) − n ≤ r ( A ∣ B ) ≤ m i n ( r ( A ) , r ( B ) ) r(A)+r(B)-n\le r(A|B)\le min(r(A),r(B)) r(A)+r(B)nr(AB)min(r(A),r(B))

2.0.3 求最小二乘解

α 1 = [ 1 2 3 4 ] , α 2 = [ 5 6 1 1 ] , b = [ 1 0 0 0 ] \alpha_1=\begin{bmatrix} 1\\ 2\\ 3\\ 4 \end{bmatrix},\alpha_2=\begin{bmatrix}5 \\ 6 \\ 1 \\ 1\end{bmatrix}, b=\begin{bmatrix}1 \\ 0\\ 0\\ 0\end{bmatrix} α1=1234,α2=5611,b=1000

b b b L ( α 1 , α 2 ) L(\alpha_1,\alpha_2) L(α1,α2)的最小距离
A T A x = X T B [ 1 2 3 4 5 6 1 1 ] [ 1 5 2 6 3 1 4 1 ] [ x 1 x 2 ] = [ 1 2 3 4 5 6 1 1 ] [ 1 0 0 0 ] [ 30 24 24 63 ] [ x 1 x 2 ] = [ 1 5 ] → x 1 = − 19 438 , x 2 = 21 219 ∣ ∣ A x − b ∣ ∣ 2 A^TAx=X^TB \\ \begin{bmatrix}1&2&3&4 \\ 5&6&1&1\end{bmatrix}\begin{bmatrix}1&5 \\ 2&6 \\ 3&1 \\ 4&1\end{bmatrix} \begin{bmatrix}x_1\\ x_2\end{bmatrix}=\begin{bmatrix}1&2&3&4 \\ 5&6&1&1\end{bmatrix}\begin{bmatrix}1 \\ 0\\ 0\\ 0\end{bmatrix} \\ \begin{bmatrix}30&24 \\ 24&63\end{bmatrix}\begin{bmatrix}x_1\\ x_2\end{bmatrix}=\begin{bmatrix}1\\ 5\end{bmatrix} \\ \to x_1=\frac{-19}{438},x_2=\frac{21}{219} \\ ||Ax-b||_2 ATAx=XTB[15263141]12345611[x1x2]=[15263141]1000[30242463][x1x2]=[15]x1=43819,x2=21921Axb2

2.0.4 酉矩阵的特征值

∣ λ i ∣ 2 = 1 , A A H = E |\lambda_i|^2=1,AA^H=E λi2=1,AAH=E

2.1 内积空间的相关概念

欧式空间与酉空间通称为内积空间

2.1.1 欧式空间⭐️

V V V是实数域 R R R上的 n n n维空间,对于 V V V中的任意两个向量 α , β \alpha,\beta α,β按照某一确定法则对应着一个实数,这个实数称为 α \alpha α β \beta β的内积。记为 ( α , β ) (\alpha,\beta) (α,β),并且要求内积满足下列运算条件:

  • ( α , β ) = ( β , α ) (\alpha,\beta)=(\beta,\alpha) (α,β)=(β,α)
  • ( k α , β ) = k ( α , β ) (k\alpha,\beta)=k(\alpha,\beta) (kα,β)=k(α,β)
  • ( α + β , r ) = ( α , r ) + ( β , r ) (\alpha+\beta,r)=(\alpha,r)+(\beta,r) (α+β,r)=(α,r)+(β,r)
  • ( α , α ) ≥ 0 (\alpha,\alpha)\ge 0 (α,α)0,当且仅当 α = 0 \alpha=0 α=0 ( α , α ) = 0 (\alpha,\alpha)=0 (α,α)=0

这里 α , β , r \alpha,\beta,r α,β,r V V V中的任意向量, k k k为任意实数,这样我们称带有这样内积的 n n n维线性空间 V V V为欧式空间

例子

R n R^n Rn中,对于

α = ( x 1 , x 2 , ⋯   , x n ) T , β = ( y 1 , y 2 , ⋯   , y n ) T \alpha=(x_1,x_2,\cdots,x_n)^T,\beta=(y_1,y_2,\cdots,y_n)^T α=(x1,x2,,xn)T,β=(y1,y2,,yn)T

若规定 ( α , β ) = α T β = x 1 y 1 + x 2 y 2 + ⋯ + x n y n (\alpha,\beta)=\alpha^T\beta=x_1y_1+x_2y_2+\cdots+x_ny_n (α,β)=αTβ=x1y1+x2y2++xnyn

容易验证是 R n R^n Rn上的一个内积,从而 R n R^n Rn成为一个欧式空间

2.1.2 酉空间⭐️

V V V是复数域 C C C上的 n n n维空间,对于 V V V中的任意两个向量 α , β \alpha,\beta α,β按照某一确定法则对应着一个实数,这个实数称为 α \alpha α β \beta β的内积。记为 ( α , β ) (\alpha,\beta) (α,β),并且要求内积满足下列运算条件:

  • ( α , β ) = ( β , α ‾ ) (\alpha,\beta)=(\overline{\beta,\alpha}) (α,β)=(β,α)
  • ( k α , β ) = k ( α , β ) (k\alpha,\beta)=k(\alpha,\beta) (kα,β)=k(α,β)
  • ( α + β , r ) = ( α , r ) + ( β , r ) (\alpha+\beta,r)=(\alpha,r)+(\beta,r) (α+β,r)=(α,r)+(β,r)
  • ( α , α ) ≥ 0 (\alpha,\alpha)\ge 0 (α,α)0,当且仅当 α = 0 \alpha=0 α=0 ( α , α ) = 0 (\alpha,\alpha)=0 (α,α)=0

定义

V V V n n n维酉空间, { α i } \{\alpha_i\} {αi}为其一组基底,对于 V V V中的任意两个向量 α = ∑ i = 1 n x i α i , β = ∑ j = 1 n y j α j \alpha=\sum_{i=1}^nx_i\alpha_i,\beta=\sum_{j=1}^ny_j\alpha_j α=i=1nxiαi,β=j=1nyjαj

那么 α \alpha α β \beta β的内积为

( α , β ) = ( ∑ i = 1 n x i α i , ∑ j = 1 n y j α j ) = ∑ i , j = 1 n x i y j ‾ ( α i , α j ) (\alpha,\beta)=(\sum_{i=1}^nx_i\alpha_i,\sum_{j=1}^ny_j\alpha_j)=\sum_{i,j=1}^n x_i\overline{y_j}(\alpha_i,\alpha_j) (α,β)=(i=1nxiαi,j=1nyjαj)=i,j=1nxiyj(αi,αj)

酉空间 C n C^n Cn内积定义可以简写为
( X , Y ) = X Y H (X,Y)=XY^H (X,Y)=XYH
酉空间上内积的定义:X和Y的共轭转置相乘

2.1.3 厄米特矩阵⭐️

前期数学准备

A ∈ C n × n A\in C^{n\times n} ACn×n,用 A ‾ \overline{A} A表示以 A A A中元素的共轭复数为元素组成的矩阵,记为 A H = ( A ‾ ) T A^H=(\overline{A})^T AH=(A)T

A H A^H AH A A A复共轭转置矩阵

性质如下

  • A H = ( A T ‾ ) A^H=(\overline{A^T}) AH=(AT)
  • ( A + B ) H = A H + B H (A+B)^H=A^H+B^H (A+B)H=AH+BH
  • ( k A ) H = k ‾ A H (kA)^H=\overline{k}A^H (kA)H=kAH
  • ( A B ) H = B H A H (AB)^H=B^HA^H (AB)H=BHAH
  • ( A k ) H = ( A H ) k (A^k)H=(A^H)^k (Ak)H=(AH)k
  • ( A H ) H = A (A^H)^H=A (AH)H=A
  • ∣ A ‾ ∣ = ∣ A ‾ ∣ |\overline{A}|=|\overline{A}| A=A
  • ( A H ) − 1 = ( A − 1 ) H (A^H)^{-1}=(A^{-1})^H (AH)1=(A1)H,如果 A A A可逆
1) 厄米特矩阵和反厄米特矩阵

如果 A ∈ C n × n A\in C^{n\times n} ACn×n,如果 A H = A A^H=A AH=A,那么我们称A为Hermite(厄米特)矩阵

如果 A H = − A A^H=-A AH=A,那么称 A A A反Hermite(厄米特)矩阵

Hermite矩阵如下图所示
[ a 1 b 12 ⋯ b 1 n b 12 ‾ a 2 ⋯ b 2 n ⋮ ⋮ ⋱ ⋮ b 1 n ‾ b 2 n ‾ ⋯ a n ] \begin{bmatrix} a_1&b_{12}&\cdots&b_{1n} \\ \overline{b_{12}}&a_2&\cdots&b_{2n} \\ \vdots&\vdots&\ddots&\vdots \\ \overline{b_{1n}}&\overline{b_{2n}}&\cdots &a_n \end{bmatrix} a1b12b1nb12a2b2nb1nb2nan

举例,判断下列矩阵是 H H H-矩阵
1. [ 4 i 2 + i 4 + 2 i − 2 + i i 1 − 4 + 2 i − 1 − 2 i ] 2. [ 6 1 + 2 i 3 i 1 − 2 i 9 1 − i − 3 i 1 + i − 7 ] 1.\begin{bmatrix}4i&2+i&4+2i\\ -2+i&i&1\\ -4+2i&-1 &-2i\end{bmatrix} \\ 2. \begin{bmatrix}6&1+2i&3i\\ 1-2i&9&1-i\\ -3i&1+i&-7\end{bmatrix} 1.4i2+i4+2i2+ii14+2i12i2.612i3i1+2i91+i3i1i7

2) 厄米特矩阵相关性质

任意 A ∈ C n × n A\in C^{n\times n} ACn×n都可以表示为一个 H − H- H矩阵和一个反 H − H- H阵之和

A = A + A H 2 + A − A H 2 A=\frac{A+A^H}{2}+\frac{A-A^H}{2} A=2A+AH+2AAH

2.1.4 度量概念

V V V为欧式空间,向量 α ∈ V \alpha\in V αV的长度定义为非负数 ∣ ∣ α ∣ ∣ = ( α , α ) ||\alpha||=\sqrt{(\alpha,\alpha)} α=(α,α)

例子

α = ( 1 + 2 i , − i , 3 , 2 + 2 i ) \alpha=(1+2i,-i,3,2+\sqrt{2}i) α=(1+2i,i,3,2+2 i)

∣ ∣ α ∣ ∣ = 5 + 1 + 9 + 6 = 21 ||\alpha||=\sqrt{5+1+9+6}=\sqrt{21} α=5+1+9+6 =21

定义

V V V为欧式空间,两个非零向量 ( α , β ) (\alpha,\beta) (α,β)的夹角定义为

< α , β > = a r c o s ( α , β ) ∣ ∣ α ∣ ∣ ∣ ∣ β ∣ ∣ <\alpha,\beta>=arcos\frac{(\alpha,\beta)}{||\alpha||||\beta||} <α,β>=arcosαβ(α,β)

于是有

0 ≤ < α , β > ≤ π 0\le<\alpha,\beta>\le \pi 0<α,β>π

2.1.5 柯西许瓦兹不等式⭐️

V V V是内积空间, α , β \alpha,\beta α,β V V V中任两向量,则有
∣ ( α , β ) ∣ ≤ ∣ ∣ α ∣ ∣ ∣ ∣ β ∣ ∣ |(\alpha,\beta)|\le ||\alpha||||\beta|| (α,β)αβ
等号当且仅当 α , β \alpha,\beta α,β线性相关时成立

向量长度具有如下性质

  • ∣ ∣ α ∣ ∣ ≥ 0 ||\alpha||\ge 0 α0,当且仅当 α = 0 \alpha=0 α=0时, ∣ ∣ α ∣ ∣ = 0 ||\alpha||=0 α=0
  • ∣ ∣ k α ∣ ∣ = ∣ k ∣ ∣ ∣ α ∣ ∣ , k ∈ C ||k\alpha||=|k|||\alpha||,k\in C kα=kα,kC
  • ∣ ∣ α + β ∣ ∣ ≤ ∣ ∣ α ∣ ∣ + ∣ ∣ β ∣ ∣ ||\alpha+\beta||\le ||\alpha||+||\beta|| α+βα+β
  • ∣ ( α , β ) ∣ ≤ ∣ ∣ α ∣ ∣ ∣ ∣ β ∣ ∣ |(\alpha,\beta)|\le ||\alpha||||\beta|| (α,β)αβ

2.2 正交基和子空间的正交关系

在空间 V V V中,如果 ( α , β ) = 0 (\alpha,\beta)=0 (α,β)=0,则称 α \alpha α β \beta β正交,记为 α ⊥ β \alpha\perp \beta αβ

长度为1的向量称为单位向量,对于任何一个非零的向量 α \alpha α,向量 α ∣ ∣ α ∣ ∣ \frac{\alpha}{||\alpha||} αα总是单位向量,称此过程为单位化

2.2.1 正交基相关概念

{ α i } \{\alpha_i\} {αi}为一组不含有零向量的向量组,如果 { α i } \{\alpha_i\} {αi}内的任意两个向量彼此正交,则称其为正交向量组

如果一个正交向量组中任何一个向量组都是单位向量,则称此向量组为标准正交向量组

n n n维内积空间中,由 n n n个正交向量组组成的基底称为正交基底

n n n个标准的正交向量组成的基底称为标准正交基底

定理

向量组 { α i } \{\alpha_i\} {αi}为正交向量组的充分必要条件是

( α i , α j ) = 0 , i ≠ j (\alpha_i,\alpha_j)=0,i\ne j (αi,αj)=0,i=j

向量组 { α i } \{\alpha_i\} {αi}为标准正交向量组的充分必要条件是

( α i , α j ) = δ i j = { 1 i = j 0 i ≠ j (\alpha_i,\alpha_j)=\delta_{ij}=\begin{cases}1&i=j\\ 0&i\ne j\end{cases} (αi,αj)=δij={10i=ji=j

2.2.2 Schmidt正交化(2步)⭐️

千万别把Smith正交化和后面的Smith标准型搞混了

正交向量组合向量组的关系

正交的向量组是一个线性无关的向量组,反之,由一个线性无关的向量组出发,可以构造一个正交向量组。甚至是一个标准正交向量组

怎么构造呢????—》这就是Schmidt正交化

Schmidt正交化与单位化过程:

{ α 1 , α 2 , ⋯   , α r } \{\alpha_1,\alpha_2,\cdots,\alpha_r\} {α1,α2,,αr} n n n维内积空间 V V V r r r个线性无关的向量,利用这 r r r个线性无关的向量,利用这 r r r个向量可以构造与之等价的一个标准正交向量组,而且 s p a n { α 1 , α 2 , ⋯   , α r } span\{\alpha_1,\alpha_2,\cdots,\alpha_r\} span{α1,α2,,αr}的一个标准正交基

1) 正交化

β 1 = α 1 β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 ⋮ β r = α r − ( α r , β 1 ) ( β 1 , β 1 ) β 1 − ⋯ − ( α r , β r − 1 ) ( β r − 1 , β r − 1 ) β r − 1 \beta_1=\alpha_1 \\ \beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1 \\ \vdots \\ \beta_r=\alpha_r-\frac{(\alpha_r,\beta_1)}{(\beta_1,\beta_1)}\beta_1-\cdots-\frac{(\alpha_r,\beta_{r-1})}{(\beta_{r-1},\beta_{r-1})}\beta_{r-1} β1=α1β2=α2(β1,β1)(α2,β1)β1βr=αr(β1,β1)(αr,β1)β1(βr1,βr1)(αr,βr1)βr1

2) 单位化

η 1 = β 1 ∣ ∣ β 1 ∣ ∣ , η 2 = β 2 ∣ ∣ β 2 ∣ ∣ , ⋯   , η r = β r ∣ ∣ β r ∣ \eta_1=\frac{\beta_1}{||\beta_1||},\eta_2=\frac{\beta_2}{||\beta_2||},\cdots,\eta_r=\frac{\beta_r}{||\beta_r|} η1=β1β1,η2=β2β2,,ηr=βrβr

显然, { η 1 , η 2 , ⋯   , η r } \{\eta_1,\eta_2,\cdots,\eta_r\} {η1,η2,,ηr}是一组标准的正交向量组

例子

image-20211221172216505

image-20211221172308839

2.3 正交(酉)变换⭐️

2.3.1 酉矩阵和正交矩阵

酉矩阵

A A A为一个 n n n阶复矩阵,如果满足 A H A = A A H = I A^HA=AA^H=I AHA=AAH=I

则称 A A A为酉矩阵,一般记作 A ∈ U n × n A\in U^{n\times n} AUn×n

A A A是酉矩阵的充要条件是 A A A的每个特征值 λ i \lambda_i λi的模 ∣ λ i ∣ = 1 |\lambda_i|=1 λi=1

正交矩阵

A A A为一个 n n n阶实矩阵,如果其满足 A T A = A A T = I A^TA=AA^T=I ATA=AAT=I

则称 A A A为正交矩阵,一般记作 A ∈ E n × n A\in E^{n\times n} AEn×n

例子
1. [ 0 2 2 2 2 1 0 0 0 − 2 2 2 2 ] 2. [ − 2 3 − 1 3 2 3 2 3 − 2 3 1 3 1 3 2 3 2 3 ] 3. [ c o s θ − s i n θ s i n θ c o s θ ] 4. [ − c o s θ 0 i s i n θ 0 1 0 i sin ⁡ θ 0 − cos ⁡ θ ] 1. \begin{bmatrix}0&\frac{\sqrt{2}}{2}&\frac{\sqrt{2}}{2}\\ 1&0&0\\ 0&-\frac{\sqrt{2}}{2}&\frac{\sqrt{2}}{2}\end{bmatrix} \\ 2.\begin{bmatrix}-\frac{2}{3}&-\frac{1}{3}&\frac{2}{3}\\ \frac{2}{3}&-\frac{2}{3}&\frac{1}{3}\\ \frac{1}{3}&\frac{2}{3}&\frac{2}{3}\end{bmatrix} \\ 3. \begin{bmatrix}cos\theta&-sin\theta\\ sin\theta&cos\theta\end{bmatrix} \\ 4. \begin{bmatrix}-cos\theta&0&isin\theta\\ 0&1&0\\ i\sin\theta&0&-\cos\theta\end{bmatrix} 1.01022 022 22 022 2.3232313132323231323.[cosθsinθsinθcosθ]4.cosθ0isinθ010isinθ0cosθ
前三个都是正交矩阵

第四个为酉矩阵

总结

A ∈ E 3 × 3 A\in E^{3\times 3} AE3×3,那么
T − 1 A T = [ a 0 0 0 cos ⁡ θ − sin ⁡ θ 0 sin ⁡ θ cos ⁡ θ ] T^{-1}AT=\begin{bmatrix}a&0&0\\ 0&\cos\theta&-\sin\theta\\ 0&\sin\theta&\cos\theta\end{bmatrix} T1AT=a000cosθsinθ0sinθcosθ
这里当 ∣ A ∣ = 1 |A|=1 A=1时, a = 1 a=1 a=1,当 ∣ A ∣ = − 1 |A|=-1 A=1时, a = 1 a=1 a=1

性质

image-20211221173946578

定理

A ∈ C n × n A\in C^{n\times n} ACn×n A A A是一个酉矩阵(正交矩阵)的充分必要条件为 A A A n n n个列(或行)向量组是标准正交向量组

2.3.2 酉相似

设给定 A , B A,B A,B,若果存在一个酉矩阵 U ∈ C U\in C UC,使得 U − 1 A U = U H A U = B U^{-1}AU=U^HAU=B U1AU=UHAU=B,我们称 A A A B B B酉相似

如果 U U U可以取为实数,那我们就说 A A A B B B实正交相似。

如果 A A A与一个对角矩阵酉相似,我们称 A A A可以酉对角化。

如果 A A A与一个对角矩阵实正交相似,我们称 A A A可以实正交对角化

2.3.3 正交变换的判定

T T T是内积空间 V V V的线性变换,若 T T T能保持 V V V中向量内积不变,即对任何 ( α , β ) ∈ V (\alpha,\beta)\in V (α,β)V,都有
( T α , T β ) = ( α , β ) (T\alpha,T\beta)=(\alpha,\beta) (Tα,Tβ)=(α,β)
则线性变换 T T T称为 V V V的一个正交变换。(即变换后,内积不变)

2.4 正规矩阵

2.4.1 正规矩阵概念

A ∈ C n × n A\in C^{n\times n} ACn×n,且 A H A = A A H A^HA=AA^H AHA=AAH,那么我们称矩阵 A A A为一个正规矩阵

A ∈ R n × n A\in R^{n\times n} ARn×n,且 A A T = A T A AA^T=A^TA AAT=ATA,那么我们称矩阵 A A A为一个实正规矩阵

例子

[ 1 − 1 1 1 ] \begin{bmatrix}1&-1\\ 1&1\end{bmatrix} [1111]为实正规矩阵

H − H- H矩阵,反 H − H- H矩阵,正交矩阵,酉矩阵,对角矩阵都是正规矩阵

2.4.2 正规矩阵性质

  • A A A是一个正规矩阵,则与 A A A酉相似的矩阵一定是正规矩阵
  • A A A是一个正规矩阵且又是三角矩阵,则 A A A必为对角矩阵

A A A是一个正规矩阵

  • A是厄米特的充要条件是: A A A的特征值全为实数
  • A A A是反厄米特矩阵的充要条件是:A的特征值为零或纯虚数
  • A是酉矩阵的充要条件是 A A A的特征值的模长为1

2.4.3 正规矩阵的结构定理

根据第三章的舒尔定理,可以证明

矩阵 A ∈ C n × n A\in C^{n\times n} ACn×n,为正规矩阵的充要条件是:存在酉矩阵 Q Q Q,使得 A A A酉相似与对角形矩阵
Q H A Q = Q − 1 A Q = [ λ 1 λ 2 ⋱ λ n ] Q^HAQ=Q^{-1}AQ=\begin{bmatrix}\lambda_1&&&\\ &\lambda_2&&\\ &&\ddots&\\ &&&\lambda_n\end{bmatrix} QHAQ=Q1AQ=λ1λ2λn
其中 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn A A A的特征值

推论,可以出判断题

  • n阶正规矩阵有n个线性无关的特征向量(必要不充分)
  • 可对角化的矩阵不一定可酉对角化
  • 正规矩阵属于不同特征值的特征向量彼此正交

image-20211221222421144

image-20211221222459356

image-20211221222526964

image-20211221222555561

2.5 最小二乘⭐️

根据我们在本科学的知识点,求 A x = b Ax=b Ax=b

r ( A ) = r ( A ∣ b ) r(A)=r(A|b) r(A)=r(Ab)时,我们才有解??

但是大多数实际情况,是无解的情况,

我们想求出一个最靠近答案的解??

使得 ∣ ∣ A x − b ∣ ∣ 2 ||Ax-b||_2 Axb2最小

下面直接给答案

A T A x = A T B A^TAx=A^TB ATAx=ATB就是最小二乘解

例子
{ x 1 + x 2 = 1 x 1 + x 3 = 2 x 1 + x 2 + x 3 = 0 x 1 + 2 x 2 − x 3 = − 1 \begin{cases} x_1+x_2=1 \\ x_1+x_3=2 \\ x_1+x_2+x_3=0 \\ x_1+2x_2-x_3=-1\end{cases} x1+x2=1x1+x3=2x1+x2+x3=0x1+2x2x3=1
解如下
A = [ 1 1 0 1 0 1 1 1 1 1 2 − 1 ] , A T = [ 1 1 1 1 1 0 1 2 0 1 1 − 1 ] , B = [ 1 2 0 − 1 ] s o A T A X = [ 4 4 1 4 6 − 1 1 − 1 3 ] [ x 1 x 2 x 3 ] = [ 2 − 1 3 ] = A T B x 1 = 17 6 , x 2 = − 13 6 , x 3 = − 4 6 A=\begin{bmatrix}1&1&0 \\ 1&0&1 \\ 1&1&1 \\ 1&2&-1\end{bmatrix},A^T= \begin{bmatrix}1&1&1&1 \\ 1&0&1&2 \\ 0&1&1&-1\end{bmatrix},B= \begin{bmatrix}1 \\ 2 \\ 0\\ -1\end{bmatrix} \\ so \quad A^TAX=\begin{bmatrix}4&4&1 \\ 4&6&-1 \\ 1&-1&3\end{bmatrix} \begin{bmatrix}x_1\\ x_2 \\x_3 \end{bmatrix}= \begin{bmatrix}2\\ -1 \\3\end{bmatrix}=A^TB \\ x_1=\frac{17}{6},x_2=-\frac{13}{6},x_3=-\frac{4}{6} A=111110120111,AT=110101111121,B=1201soATAX=441461113x1x2x3=213=ATBx1=617,x2=613,x3=64

2.6 正交投影变换(书上没有-不用看)

2.6.1 幂等矩阵

A ∈ C n × n A\in C^{n\times n} ACn×n,如果 A A A满足 A 2 = A A^2=A A2=A则称 A A A是一个幂等矩阵

性质

  • A T , A H , I − A , I − A T , I − A H A^T,A^H,I-A,I-A^T,I-A^H AT,AH,IA,IAT,IAH都是幂等矩阵

  • A ( I − A ) = ( I − A ) A = 0 A(I-A)=(I-A)A=0 A(IA)=(IA)A=0

  • N ( A ) = R ( I − A ) N(A)=R(I-A) N(A)=R(IA)

  • A x = x Ax=x Ax=x的充分必要条件是 x ∈ R ( A ) x\in R(A) xR(A)

  • C n = R ( A ) ⊕ N ( A ) C^n=R(A)\oplus N(A) Cn=R(A)N(A), x = A x + ( x − A x ) x=Ax+(x-Ax) x=Ax+(xAx)

    R(A)指的是A的值域,N(A)是其零空间

  • N ( A ) = R ( I − A ) N(A)=R(I-A) N(A)=R(IA)

    如果 x ∈ N ( A ) x\in N(A) xN(A),则有 A x = 0 Ax=0 Ax=0

    可知 x − A x = x − 0 = x x-Ax=x-0=x xAx=x0=x,整理为 ( I − A ) x = x (I-A)x=x (IA)x=x

    因此 x ∈ R ( I − A ) x\in R(I-A) xR(IA),即可得 N ( A ) ⊆ R ( I − A ) N(A)\subseteq R(I-A) N(A)R(IA)

幂等矩阵的结构定理

A A A是一个秩为 r r r n n n阶矩阵,那么 A A A为一个幂等矩阵的充分必要条件是存在 P ∈ C n n × n P\in C^{n\times n}_n PCnn×n使得

P − 1 A P = [ I r 0 0 0 ] P^{-1}AP=\begin{bmatrix}I_r&0\\ 0&0\end{bmatrix} P1AP=[Ir000]

A A A是一个 n n n阶幂等矩阵,则有

T r ( A ) = r a n k ( A ) Tr(A)=rank(A) Tr(A)=rank(A)

幂矩阵与投影变换

S , T S,T S,T n n n维酉空间 V V V的两个子空间,且 V = S ⊕ T V=S\oplus T V=ST,则对于 V V V中任一向量 α \alpha α均可唯一的表示为

α = x + y , x ∈ S , y ∈ T \alpha=x+y,x\in S,y\in T α=x+y,xS,yT

则称 x x x α \alpha α沿 T T T S S S的投影, y y y α \alpha α沿 S S S T T T的投影

由上式确定的线性变换 τ : V → S ⊆ V τ ( α ) = x \tau:V\to S\subseteq V\\ \tau(\alpha)=x τ:VSVτ(α)=x

称为 V V V沿 T T T S S S的投影变换

定理

A A A是一个 n n n阶幂等矩阵,则线性变换 τ ( α ) = A α , ∀ α ∈ C n \tau(\alpha)=A\alpha,\forall \alpha\in C^n τ(α)=Aα,αCn

C n C^n Cn沿着 N ( A ) N(A) N(A) R ( A ) R(A) R(A)的投影变换

提示: C n = R ( A ) ⊕ N ( A ) , α = A α + ( α − A α ) C^n=R(A)\oplus N(A),\alpha=A\alpha+(\alpha-A\alpha) Cn=R(A)N(A),α=Aα+(αAα),其中 A α ∈ R ( A ) , ( α − A α ) ∈ N ( A ) A\alpha\in R(A),(\alpha-A\alpha)\in N(A) AαR(A),(αAα)N(A)

定理

τ \tau τ n n n维酉空间 V V V上的线性变换,则下列命题等价

  • τ \tau τ V V V上的投影变换
  • τ 2 = τ \tau ^2=\tau τ2=τ
  • τ \tau τ的矩阵表示 A A A满足 A 2 = A A^2=A A2=A

2.6.2 概念

正交补
正交投影变换

A A A是一个 n n n阶幂等的 H − H- H矩阵,则线性变换

σ ( α ) = A α , ∀ α ∈ C n \sigma(\alpha)=A\alpha,\forall \alpha \in C^n σ(α)=Aα,αCn

C n C^n Cn R ( A ) R(A) R(A)的正交投影变换

正交投影是指像空间U和零空间W相互正交子空间的投影。

2.6.3 总结

为什么投影变换和正交投影变换的区别是幂等矩阵是否是Hermite矩阵?

投影变换的充要条件是A^2=A,
正交投影变换的充要条件是A^2=A,且A是Hermite矩阵。

2.7 厄米特二次型

  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值