面向全局搜索的自适应领导者樽海鞘群算法

一、理论基础

1、基本樽海鞘群算法

请参考这里

2、改进算法ALSSA

2.1 改进领导者位置更新公式

2.1.1 引入上一代樽海鞘领导者位置

本文在领导者位置更新公式中引入上一代樽海鞘领导者位置,使得领导者在位置更新阶段既受上一代樽海鞘领导者位置的影响,同时又受上一代全局最优解的影响,有效地避免了基本算法易陷入局部极值的问题,提高了算法的寻优精度。改进后的樽海鞘领导者位置更新公式为: X j i ( t ) = X j i ( t − 1 ) + ( F o o d P o s i t i o n j ( t − 1 ) − X j i ( t − 1 ) ) ⋅ r a n d (1) X_j^i(t)=X_j^i(t-1)+(FoodPosition_j(t-1)-X_j^i(t-1))\cdot rand\tag{1} Xji(t)=Xji(t1)+(FoodPositionj(t1)Xji(t1))rand(1)其中, X j i ( t − 1 ) X_j^i(t-1) Xji(t1)为上一代中第 i i i个樽海鞘领导者在第 j j j维的位置, F o o d P o s i t i o n j ( t − 1 ) FoodPosition_j(t-1) FoodPositionj(t1)为上一代中第 j j j维的全局最优解,通过引入上一代的位置,樽海鞘领导者能够更有效地进行全局搜索,增强算法跳出局部极值的能力。

2.1.2 引入惯性权重

本文还在领导者位置更新公式中引入动态惯性权重,随迭代次数自适应递减的惯性权重 w w w表示了樽海鞘领导者受全局最优解影响程度的变化。惯性权重的计算公式为: w = e 2 ⋅ ( 1 − t / M a x _ i t e r ) − e − 2 ⋅ ( 1 − t / M a x _ i t e r ) e 2 ⋅ ( 1 − t / M a x _ i t e r ) + e − 2 ⋅ ( 1 − t / M a x _ i t e r ) (2) w=\frac{e^{2\cdot(1-t/Max\_iter)}-e^{-2\cdot(1-t/Max\_iter)}}{e^{2\cdot(1-t/Max\_iter)}+e^{-2\cdot(1-t/Max\_iter)}}\tag{2} w=e2(1t/Max_iter)+e2(1t/Max_iter)e2(1t/Max_iter)e2(1t/Max_iter)(2)结合公式(1)、(2),新的樽海鞘领导者位置更新公式为: X j i ( t ) = X j i ( t − 1 ) + ( w ⋅ F o o d P o s i t i o n j ( t − 1 ) − X j i ( t − 1 ) ) ⋅ r a n d (3) X_j^i(t)=X_j^i(t-1)+(w\cdot FoodPosition_j(t-1)-X_j^i(t-1))\cdot rand\tag{3} Xji(t)=Xji(t1)+(wFoodPositionj(t1)Xji(t1))rand(3)其中,惯性权重 w w w为基于双曲正切函数的非线性递减值,其取值范围为 ( 0 , 1 ) (0,1) (0,1) t t t为当前迭代次数, M a x _ i t e r Max\_iter Max_iter为最大迭代次数, X j i ( t − 1 ) X_j^i(t-1) Xji(t1)为上一代中第 i i i个樽海鞘领导者在第 j j j维的位置, F o o d P o s i t i o n j ( t − 1 ) FoodPosition_j(t-1) FoodPositionj(t1)为上一代中第 j j j维的全局最优解。通过引入惯性权重,使得改进后的算法能够在全局和局部搜索之间保持较好平衡,樽海鞘领导者更好地发挥领导者作用,提高算法的寻优精度。

2.2 引入领导者-跟随者自适应调整策略

本文引入领导者-跟随者自适应调整策略,樽海鞘领导者的数目随迭代次数的增加自适应减少,跟随者数目自适应增加,在算法前期能够保持很强的全局搜索能力,同时兼顾局部搜索,而在算法运行后期,局部搜索逐渐增强,同时也兼顾全局搜索,从整体上提高了算法的收敛精度。改进后的领导者-跟随者数量计算公式为:
每代中领导者数量等于 r ⋅ N r\cdot N rN
跟随者数量等于 ( 1 − r ) N (1-r)N (1r)N r = b ⋅ ( tan ⁡ ( − π t 4 ⋅ M a x _ i t e r + π 4 ) − k ⋅ r a n d ( ) ) (4) r=b\cdot\left(\tan\left(-\frac{\pi t}{4\cdot Max\_iter}+\frac\pi4\right)-k\cdot rand()\right)\tag{4} r=b(tan(4Max_iterπt+4π)krand())(4)其中, t t t是当前迭代次数, M a x _ i t e r Max\_iter Max_iter是最大迭代次数。 b b b为控制领导者-跟随者数量的比例系数,避免迭代前期的樽海鞘领导者或迭代后期的樽海鞘跟随者比例过高,全局和局部搜索失衡降低寻优性能,易陷入局部极值的现象,经大量实验测试,本文取值为0.75。分析式(4)可知, r r r的值随着算法迭代次数的增加呈非线性递减趋势,于是领导者数量逐渐减少,跟随者数量逐渐增加,在迭代后期,更多的樽海鞘跟随者在全局最优值附近深度挖掘。 k k k为扰动偏离因子,结合 r a n d rand rand函数对递减的 r r r值进行扰动,经大量实验反复测试, k k k等于0.2时,寻优效果最佳。

3、ALSSA算法流程

ALSSA算法描述如下:
在这里插入图片描述

二、仿真实验

为了全面检验本文改进算法的寻优能力,选取12个具有不同寻优特征的CEC2017基准测试函数,将本文算法ALSSA与 SSA(2017)、Improved Salp Swarm Algorithm(ISSA, 2018)[2]、Enhanced Salp Swarm Algorithm(ESSA 2019)[3]和Phasor Particle Swarm Optimization(PPSO, 2019)[4]共五种算法,分别在10维、50维和100维上进行对比测试。本文选取50维的f1~f5进行测试。为保证实验的公平性与客观性,五种算法均在相同条件下独立运行30次,种群大小均为30,最大进化代数 M a x _ i t e r = 1000 Max\_iter=1000 Max_iter=1000
结果显示如下:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

函数:F1
ALSSA:最差值: 1.3784e-170,最优值:2.9511e-181,平均值:4.6014e-172,标准差:0
ESSA:最差值: 3.873e-35,最优值:1.9409e-67,平均值:1.3616e-36,标准差:7.0671e-36
SSA:最差值: 4671.7464,最优值:0.080235,平均值:725.8782,标准差:1280.8211
PPSO:最差值: 26861.257,最优值:5.9303,平均值:5109.7118,标准差:6239.9528
ISSA:最差值: 8875.3435,最优值:53.6108,平均值:2806.6147,标准差:2887.2303
函数:F2
ALSSA:最差值: 3.6226e-213,最优值:8.3791e-242,平均值:1.208e-214,标准差:0
ESSA:最差值: 6.8185e-39,最优值:7.5051e-79,平均值:2.273e-40,标准差:1.2449e-39
SSA:最差值: 4.52868283568363e+33,最优值:3.331564698998887e+21,平均值:3.178190306763243e+32,标准差:1.008186450073652e+33
PPSO:最差值: 5.2911e-06,最优值:1.812e-14,平均值:3.2316e-07,标准差:9.679e-07
ISSA:最差值: 1.704601382275537e+38,最优值:1.621108126168587e+27,平均值:6.77598412558555e+36,标准差:3.121402855304758e+37
函数:F3
ALSSA:最差值: 1.0687e-175,最优值:2.012e-187,平均值:4.9956e-177,标准差:0
ESSA:最差值: 1.2426e-43,最优值:1.2088e-87,平均值:4.302e-45,标准差:2.2667e-44
SSA:最差值: 3.5227e-07,最优值:8.7778e-08,平均值:1.804e-07,标准差:7.3417e-08
PPSO:最差值: 0.09579,最优值:1.9342e-05,平均值:0.014775,标准差:0.02086
ISSA:最差值: 1.9982e-07,最优值:7.8953e-08,平均值:1.1748e-07,标准差:2.7033e-08
函数:F4
ALSSA:最差值: 0,最优值:0,平均值:0,标准差:0
ESSA:最差值: 0,最优值:0,平均值:0,标准差:0
SSA:最差值: 0.024524,最优值:0.00011319,平均值:0.0079809,标准差:0.0082814
PPSO:最差值: 0.0057122,最优值:2.8978e-06,平均值:0.00044912,标准差:0.0010256
ISSA:最差值: 0.022691,最优值:2.6505e-05,平均值:0.0047983,标准差:0.0068465
函数:F5
ALSSA:最差值: 0,最优值:0,平均值:0,标准差:0
ESSA:最差值: 0,最优值:0,平均值:0,标准差:0
SSA:最差值: 877.5308,最优值:305.4502,平均值:499.9647,标准差:126.0478
PPSO:最差值: 45.181,最优值:9.2047e-06,平均值:7.4628,标准差:12.5125
ISSA:最差值: 658.6539,最优值:234.8094,平均值:407.8959,标准差:120.6948

上述求解结果和分析表明,ALSSA算法均呈现出较好的求解性能,求解精度和稳定性明显优于其它四个对比算法。

三、参考文献

[1] 刘景森, 袁蒙蒙, 左方. 面向全局搜索的自适应领导者樽海鞘群算法[J]. 控制与决策, 2021, 36(9): 2152-2160.
[2] 王梦秋, 王艳, 纪志成. 基于改进樽海鞘群算法的PMSM多参数辨识[J]. 系统仿真学报, 2018, 30(11): 4284-4292.
[3] M. H. Qais, H. M. Hasanien, S. Alghuwainem. Enhanced salp swarm algorithm: Application to variable speed wind generators[J]. Engineering Applications of Artificial Intelligence, 2019, 80: 82-96.
[4] Ghasemi, M., Akbari, E., Rahimnejad, A. et al. Phasor particle swarm optimization: a simple and efficient variant of PSO[J]. Soft Computing, 2019, 23: 9701-9718.

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心️升明月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值