多策略融合改进的自适应蜉蝣算法

一、理论基础

1、标准蜉蝣算法

请参考这里

2、多策略融合改进的自适应蜉蝣算法

2.1 Sin混沌映射初始化种群

群体初始化对当前大多数智能优化算法的效率有很大影响,均匀分布的种群可以适度地扩大算法的搜索范围,从而提高收敛速度和求解精度。混沌映射具有随机性、遍历性和规律性特点,常用于优化搜索问题,以保持种群多样性及跳出局部最优解。本文以Sin混沌映射生成初始种群,定义如下: x n + 1 = μ sin ⁡ ( π x n ) ,    0 ≤ x n ≤ 1 (1) x_{n+1}=\mu\sin(\pi x_n),\,\,0\leq x_n\leq1\tag{1} xn+1=μsin(πxn),0xn1(1)其中, x x x表示迭代值, μ \mu μ为范围为 [ 0 , 1 ] [0, 1] [0,1]的控制参数。通过Sin混沌映射可以让生成的初始种群较为均匀地充斥整个解空间,提高初始种群质量,利于前期的全局搜索。

2.2 基于Tent混沌映射和高斯变异的种群调节

为了增加种群多样性、提高求解进度,使算法不容易在迭代末期陷入局部最优区域而无法脱出,需要在每个迭代环节末对种群进行调节。设 f i f_i fi为蜉蝣适应度函数值, f a f_a fa为种群适应度函数值的平均值,则按如下方式判断:
1)若 f i < f a f_i<f_a fi<fa,即出现“聚集”现象,进行高斯变异,若新位置适应度函数值低于旧位置则进行位置替换;
2)若 f i ≥ f a f_i\geq f_a fifa,即出现“发散”现象,进行Tent混沌映射,按同样原则进行位置替换。

2.2.1 Tent混沌映射

若利用混沌映射初始化种群后再对种群进行调节,使用多种混沌映射能避免多次陷入重复点,导致调节失效。Tent混沌映射定义如下: x n + 1 = { 2 x n      if    x n ∈ [ 0 , 0.5 ] 0.5 x n if    x n ∈ ( 0.5 , 1 ] (2) x_{n+1}=\begin{dcases}2x_n\quad\,\,\,\,\text{if}\,\,x_n\in[0,0.5]\\[2ex]0.5x_n\quad\text{if}\,\,x_n\in(0.5,1]\end{dcases}\tag{2} xn+1=2xnifxn[0,0.5]0.5xnifxn(0.5,1](2)其中, x x x表示迭代值。Tent混沌映射容易在小循环周期和不动点上出现问题。针对此,在Tent混沌映射基础上引入随机变量,改进后表达式为: x n + 1 = { 2 x n + r a n d ( 0 , 1 ) / N      if    x n ∈ [ 0 , 0.5 ] 0.5 x n + r a n d ( 0 , 1 ) / N if    x n ∈ ( 0.5 , 1 ] (3) x_{n+1}=\begin{dcases}2x_n+rand(0,1)/N\quad\,\,\,\,\text{if}\,\,x_n\in[0,0.5]\\[2ex]0.5x_n+rand(0,1)/N\quad\text{if}\,\,x_n\in(0.5,1]\end{dcases}\tag{3} xn+1=2xn+rand(0,1)/Nifxn[0,0.5]0.5xn+rand(0,1)/Nifxn(0.5,1](3)其中, N N N为混沌序列内粒子个数, r a n d ( 0 , 1 ) rand(0,1) rand(0,1)表示范围为 [ 0 , 1 ] [0,1] [0,1]的随机数。

2.2.2 高斯变异

高斯分布即正态分布,在自然界中很多随机因素和影响都可以近似地用它来描述,许多概率分布可以用它来近似或导出,在统计学等诸多领域有重大的影响力。高斯变异就是在原有个体的状态上加一个服从高斯分布的随机向量,高斯变异定义如下: m u t a t i o n ( x ) = x ⋅ [ 1 + σ N ( 0 , 1 ) ] (4) mutation(x)=x\cdot[1+\sigma N(0,1)]\tag{4} mutation(x)=x[1+σN(0,1)](4)其中, x x x表示蜉蝣原本的位置, σ N ( 0 , 1 ) \sigma N(0,1) σN(0,1)表示服从高斯分布的均值为0、方差为1的随机数, m u t a t i o n ( x ) mutation(x) mutation(x)为变异后的蜉蝣位置。
由高斯分布特性可知,多数变异算子分布在原始位置周围,局部搜索能力强,能够提高优化算法的寻优精度,有利于跳出局部最优区域。同时,少数算子远离当前位置,提高了种群的多样性,有利于更好地搜索潜在区域,从而加快搜索速度,提高了逃出局部最优解的概率。

2.3 不完全伽马函数的自适应重力系数

重力系数,或称惯性权重,对算法的搜索能力和开发能力具有一定的指导作用,体现出蜉蝣能够借鉴一定先验行为的能力。较大的重力系数具有良好的全局搜索能力;较小的惯性权重具有较好的局部开发能力。文中引入一种非线性递减的自适应重力系数,从而更好地平衡全局搜索和局部开发能力。重力系数 g ( t ) g(t) g(t)的表达式如下: g ( t ) = ( 1 − t / T ) t / T α (5) g(t)=(1-t/T)^{\sqrt[\alpha]{t/T}}\tag{5} g(t)=(1t/T)αt/T (5)其中, t t t为当前迭代次数, T T T为最大迭代次数, α \alpha α为重力系数控制系数。
但考虑到具有确定性数学表达式的重力系数将按照固定规律搜索,很容易陷入局部最优,做不到真正的自适应机制。因此,引入不完全伽玛函数],重构自适应动态调节的重力系数 g ( t ) g(t) g(t),其表达式如下: g ′ ( t ) = ( 1 − t / T ) t / T α ⋅ Γ ( λ , 1 − t / T ) (6) g'(t)=(1-t/T)^{\sqrt[\alpha]{t/T}}\cdot\Gamma(\lambda,1-t/T)\tag{6} g(t)=(1t/T)αt/T Γ(λ,1t/T)(6)其中, Γ ( λ , μ ) \Gamma(\lambda,\mu) Γ(λ,μ)是不完全的伽玛函数, λ \lambda λ为大于0的随机变量,取0.1。
雄性蜉蝣的速度表达式更新如下: v i , j t + 1 = { g ′ ( t ) ⋅ v i , j t + a 1 e − β r p 2 ( p b e s t i , j − x i , j t ) + a 2 e − β r g 2 ( g b e s t j − x i , j ) if    f ( x i t ) > f min ⁡ g ′ ( t ) ⋅ v i , j t + d ⋅ r      if     f ( x i t ) = f min ⁡ (7) v_{i,j}^{t+1}=\begin{dcases}g'(t)\cdot v_{i,j}^t+a_1e^{-\beta r_p^2}\left(pbest_{i,j}-x_{i,j}^t\right)+a_2e^{-\beta r_g^2}\left(gbest_j-x_{i,j}\right)\quad\text{if}\,\,f(x_i^t)>f_{\min}\\[2ex]g'(t)\cdot v_{i,j}^t+d\cdot r\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\,\,\,\,\text{if}\,\,\,f(x_i^t)=f_{\min}\end{dcases}\tag{7} vi,jt+1=g(t)vi,jt+a1eβrp2(pbesti,jxi,jt)+a2eβrg2(gbestjxi,j)iff(xit)>fming(t)vi,jt+driff(xit)=fmin(7)若改变后的速度超过范围 [ V min ⁡ , V max ⁡ ] \left[V_{\min},V_{\max}\right] [Vmin,Vmax],则限制为边界值。
雌性蜉蝣的速度表达式更新如下: v i , j t + 1 = { g ′ ( t ) ⋅ v i , j t + a 3 e − β r m f 2 ( x i , j t − y i , j t )    if    f ( y i t ) > f ( x i t ) g ′ ( t ) ⋅ v i , j t + f l ⋅ r if    f ( x i t ) ≤ f ( y i t ) (8) v_{i,j}^{t+1}=\begin{dcases}g'(t)\cdot v_{i,j}^t+a_3e^{-\beta r_{mf}^2}\left(x_{i,j}^t-y_{i,j}^t\right)\quad\,\,\text{if}\,\,f(y_i^t)>f(x_i^t)\\[2ex]g'(t)\cdot v_{i,j}^t+fl\cdot r\quad\quad\quad\quad\quad\quad\quad\quad\text{if}\,\,f(x_i^t)\leq f(y_i^t)\end{dcases}\tag{8} vi,jt+1=g(t)vi,jt+a3eβrmf2(xi,jtyi,jt)iff(yit)>f(xit)g(t)vi,jt+flriff(xit)f(yit)(8)若改变后的速度超过范围 [ V min ⁡ , V max ⁡ ] \left[V_{\min},V_{\max}\right] [Vmin,Vmax],则限制为边界值。

2.4 随机反向学习策略

变异公式如下: m u t a t i o n ( x ) = x min ⁡ + x max ⁡ − r ∗ x (9) mutation(x)=x_{\min}+x_{\max}-r^*x\tag{9} mutation(x)=xmin+xmaxrx(9)其中, x x x表示蜉蝣原本的位置, x max ⁡ x_{\max} xmax x min ⁡ x_{\min} xmin分别表示 x x x的上下界, r r r为是 [ 0 , 1 ] [0,1] [0,1]之间的随机数。

2.5 MIMA算法流程图

文中提出的“基于Tent混沌映射和高斯变异的种群调节”和“随机反向学习策略”两种变异策略皆采用贪心算法。简而言之,就是当且仅当变异后蜉蝣个体的适应度函数值减小,才进行此次变异,蜉蝣个体的位置才会因此发生改变。
综合上述引入的四项改进策略,文中提出的MIMA算法流程图如下:
在这里插入图片描述

图1 MIMA算法流程图

二、仿真实验与结果分析

将MIMA与PSO、GWO、SCA和MA进行对比,以文献[1]中表3的F3、F4(单峰函数/30维)、F7、F11(不定维多峰函数/30维)、F12、F13(固定维度函数/2维、4维)为例,实验设置种群规模为40,其中雄性和雌性个体数量均为20,最大迭代次数为500,每种算法独立运算30次,结果显示如下:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

函数:F3
MIMA:最差值: 2.6873e-242, 最优值: 1.2398e-258, 平均值: 8.9576e-244, 标准差: 0, 秩和检验: 1
PSO:最差值: 6.8857, 最优值: 1.3119, 平均值: 3.3744, 标准差: 1.2628, 秩和检验: 3.0199e-11
GWO:最差值: 3.582e-07, 最优值: 1.6782e-08, 平均值: 9.4994e-08, 标准差: 8.195e-08, 秩和检验: 3.0199e-11
SCA:最差值: 54.0801, 最优值: 14.2064, 平均值: 31.7387, 标准差: 10.528, 秩和检验: 3.0199e-11
MA:最差值: 1.9328, 最优值: 0.10163, 平均值: 0.54714, 标准差: 0.35882, 秩和检验: 3.0199e-11
函数:F4
MIMA:最差值: 1.6825e-07, 最优值: 1.6895e-11, 平均值: 2.0681e-08, 标准差: 3.9044e-08, 秩和检验: 1
PSO:最差值: 1.3806, 最优值: 0.52926, 平均值: 0.84919, 标准差: 0.2247, 秩和检验: 3.0199e-11
GWO:最差值: 1.0062, 最优值: 7.5232e-05, 平均值: 0.52388, 标准差: 0.26601, 秩和检验: 3.0199e-11
SCA:最差值: 72.4994, 最优值: 4.5331, 平均值: 12.58, 标准差: 15.8766, 秩和检验: 3.0199e-11
MA:最差值: 5.4194e-07, 最优值: 7.5025e-13, 平均值: 1.9849e-08, 标准差: 9.865e-08, 秩和检验: 0.0090688
函数:F7
MIMA:最差值: -12569.4866, 最优值: -12569.4866, 平均值: -12569.4866, 标准差: 1.0176e-05, 秩和检验: 1
PSO:最差值: -2067.2095, 最优值: -6124.4384, 平均值: -3455.5922, 标准差: 745.6586, 秩和检验: 3.0199e-11
GWO:最差值: -4881.8033, 最优值: -7083.9518, 平均值: -6133.5834, 标准差: 523.4658, 秩和检验: 3.0199e-11
SCA:最差值: -3354.0103, 最优值: -4408.5449, 平均值: -3894.1365, 标准差: 243.3033, 秩和检验: 3.0199e-11
MA:最差值: -6836.3416, 最优值: -9647.4076, 平均值: -8133.7376, 标准差: 623.4033, 秩和检验: 3.0199e-11
函数:F11
MIMA:最差值: 6.2153e-08, 最优值: 1.2727e-12, 平均值: 5.3102e-09, 标准差: 1.2968e-08, 秩和检验: 1
PSO:最差值: 5.9933, 最优值: 0.58619, 平均值: 3.4413, 标准差: 1.3656, 秩和检验: 3.0199e-11
GWO:最差值: 0.083983, 最优值: 0.0060995, 平均值: 0.036141, 标准差: 0.019423, 秩和检验: 3.0199e-11
SCA:最差值: 750546.5172, 最优值: 0.50556, 平均值: 33685.551, 标准差: 138055.6305, 秩和检验: 3.0199e-11
MA:最差值: 1.4552, 最优值: 4.6765e-08, 平均值: 0.20824, 标准差: 0.3305, 秩和检验: 3.3384e-11
函数:F12
MIMA:最差值: 0.998, 最优值: 0.998, 平均值: 0.998, 标准差: 5.8312e-17, 秩和检验: 1
PSO:最差值: 5.9288, 最优值: 0.998, 平均值: 1.7892, 标准差: 1.4973, 秩和检验: 2.3638e-12
GWO:最差值: 12.6705, 最优值: 0.998, 平均值: 3.3172, 标准差: 3.6983, 秩和检验: 2.3638e-12
SCA:最差值: 10.7632, 最优值: 0.998, 平均值: 1.5887, 标准差: 1.8629, 秩和检验: 2.3638e-12
MA:最差值: 2.2038, 最优值: 0.998, 平均值: 1.0402, 标准差: 0.22005, 秩和检验: 0.11193
函数:F13
MIMA:最差值: 0.0012232, 最优值: 0.00030749, 平均值: 0.00050311, 标准差: 0.00037246, 秩和检验: 1
PSO:最差值: 0.020365, 最优值: 0.00052207, 平均值: 0.0028871, 标准差: 0.0058073, 秩和检验: 1.9932e-06
GWO:最差值: 0.020363, 最优值: 0.00030749, 平均值: 0.0050644, 标准差: 0.0085873, 秩和检验: 7.7072e-06
SCA:最差值: 0.001518, 最优值: 0.00049764, 平均值: 0.0010384, 标准差: 0.0003409, 秩和检验: 2.5584e-07
MA:最差值: 0.020363, 最优值: 0.00030749, 平均值: 0.0030245, 标准差: 0.0069211, 秩和检验: 0.041856

实验结果表明:多策略融合改进的自适应蜉蝣算法与其他算法相比,寻优精度、收敛速度、稳定性都取得较大提升。

三、参考文献

[1] 蒋宇飞, 许贤泽, 徐逢秋, 等. 多策略融合改进的自适应蜉蝣算法[J/OL]. 北京航空航天大学学报: 1-14 [2022-10-13].

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心️升明月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值