Opcua学习笔记-NodeId

NodeId

在过去,经典的 DA 服务器使用简单的“字符串”标识符。所谓的“ItemID”是一个完全限定的名称,在整个服务器中是唯一的(只有一个“命名空间”)。此外,经典的 DA 服务器仅具有简单层次结构的能力,即具有分支和叶子的树状结构。因此,许多供应商使用完整的文件夹层次结构来创建唯一的 ItemID(例如“Folder1.Folder2.Folder3.MyTemperature”)。这会导致大量冗余字符串、浪费内存并降低查找或搜索单个项目时的性能。有了 OPC UA,这个概念就被抛弃了。

NodeId 总是由三个元素组成:

命名空间索引
OPC UA 服务器用于命名空间 URI 的索引。命名空间 URI 标识了定义 NodeId 标识符的命名机构,例如 OPC 基金会、其他标准机构和联盟、底层系统、本地服务器。它们存储在所谓的命名空间数组(也称为命名空间表)中。命名空间索引是用于标识命名空间以优化传输和处理的数值。命名空间索引是命名空间 URI 在命名空间数组中的索引。

标识符类型
标识符的格式和数据类型。它可以是数值、字符串、全局唯一标识符 (GUID) 或不透明值(ByteString 中的命名空间特定格式)。首选哪种类型取决于用例。如果节省内存或带宽很重要,则使用更小且解析速度更快的数字 NodeId 是有意义的。OPC 基金会定义的 OPC UA 命名空间使用数字 NodeId。系统范围和全球唯一的标识符允许客户端跟踪节点,例如工作订单,在 OPC UA 服务器之间移动,因为它们在系统中进行。

标识符
OPC UA 服务器地址空间中节点的标识符。

在这里插入图片描述

字符串表示法

NodeId 有一个字符串表示法,它定义为 OPC UA XML 模式的一部分,它表示完全限定的 NodeId。字符串的格式是:

ns=<命名空间索引>;<标识符类型>=<标识符>

<命名空间索引>
命名空间索引格式为以 10 为底的数字。如果索引为0,那么整个“ns=0;” 子句被省略。

<标识符类型>
指定标识符类型的标志。该标志具有以下值:

在这里插入图片描述
ns=2;s=MyTemperature
namespace index 2, string identifier
i=2045
namespace index 0, numeric identifier
ns=1;g=09087e75-8e5e-499b-954f-f2a9603db28a
namespace index 1, GUID identifier
ns=1;b=M/RbKBsRVkePCePcx24oRA==’
namespace index 1, Opaque/ByteString identifier

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秦人阿超

创作不易,如果帮到你了,感谢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值