一、线段的提取和描述
在LBD的论文中,线段的提取依然是使用EDLine算法,但是在此基础上,增加了一个高斯金字塔。论文使用了一个没有内层的高斯金字塔,一般是五层,通过高斯模糊,逐层处理,之后对每一层使用EDLine算法提取线,提取出来的线利用边上像素的梯度来确定一个方向,边上所有像素的平均梯度所指向的方向,就是线的左侧指向右侧。
之后,将高斯金字塔中不同层的线整合到一起。所谓整合到一起,就是将同一条线在不同层上的表现整合在一起,为了方便叙述,将高斯金字塔最底层的一条线在其他层提取到的结果称为子线,那么整合这一步,实际上就是将线和子线放在一起,因为提取的时候是在高斯金字塔上不同层进行的,所以相当于要将子线对齐到线上。

从代码运行的结果来看,上面这张图实际上是理想情况,我在运行代码的时候,将每一层的子线数目都打印了一下,到高斯金字塔第五层的时候,由于进行了五次高斯模糊,所以图片的清晰程度已经很低了,提取出的线的数目大概是第一层的五分之一,也就是说,如果第一层有100条,第五层就只有20条,那么按照上图所示,在匹配完全成功的情况下,最多也就只有20个LineVec的大小为5,如果子线没有匹配的情况,LineVec的数目根本就没多少。
为了方便叙述,我们将子线分配的过程称为层间匹配,在层间匹配的过程中,代码的写法也比较难理解,假设一条线l在第一层为l1在第二层为l2,代码的写法上认为,如果这两线不匹配,那就是完全不相干的两条线,就是说如果因为EDLine算法的计算误差,导致l1和l2的偏差有些大,超过了匹配的阈值,这两条线完全就认为是两条线,会被分配独自的一个ID进行后续的处理。
这一点根据和师兄的讨论,觉得用特征增强的理论去解释更好理解,使用高斯金字塔,本身是一个描述远距离观察的过程,增加层数,相当于增加了观察者到图像的距离,提取出来的特征一方面看属于金字塔的不同层,但实际上还是图像的一个特征,所以,即使不匹配,也依然是图像的特征的一部分。
其实这

本文详细介绍了LBD算法如何通过EDLine和高斯金字塔提取线段,利用梯度和权值计算LBD描述子,以及其在匹配过程中的旋转、长度筛选和几何关系融合。重点讲解了利用特征增强理论理解匹配策略,并展示了完整的匹配流程和特征向量的应用。
最低0.47元/天 解锁文章
1004

被折叠的 条评论
为什么被折叠?



