构建信用风险综合评价体系——基于主成分与因子分析

本文探讨了使用主成分分析和因子分析进行变量降维的方法,构建信用风险综合评价体系。通过对银行数据的分析,证明了5个因子能有效解释原始数据的88.365%方差,且构建的因子评分系统在风险评估中表现出良好的区分度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多维数据在建模过程中,会出现很多问题,在基于logit模型的客户信用风险预测一文中,有谈到关于变量降维的几种方法:(1)基于经验,简单但主观性很强;(2)基于变量的统计显著性,模型上可靠但未必实务上可用;(3)变量规约,即用因子分析、主成分分析等方法将多个变量分解或合成为少数几个聚合因子。

之前用的是(1)和(2),这篇文章讨论第三种:主成分分析与因子分析。首先解决两个问题。

  • 什么是主成分分析与因子分析

同:都是统计降维方法,将多个变量浓缩为少数几个新变量(主成分或因子)
异:浓缩方法不同,主成分分析是将原变量进行聚合,新变量(主成分)表示为原变量的线性组合;因子分析是将原变量进行结构,原变量表示为新变量(因子)的线性组合。

  • 主成分分析与因子分析有什么用?

(1)对解释变量进行降维处理,输出值作为下一步的输入值,作为其它建模过程的准备部分。
(2)直接作为建模主体,构建指标评价体系。

下面通过一个案例加以说明。
背景与上一篇文章相似,我们依然希望通过一些变量和数据建立起客户(银行)的风险评估体系&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值