计算机视觉——相机标定

本文详细介绍了相机标定的过程,包括相机坐标系与图像坐标系的转换、畸变参数(径向畸变和切向畸变)及其校正方法。通过标定,可以获取相机的内参和外参,对图像进行畸变矫正,提高图像处理的准确性。文中还展示了实验流程、代码和结果。
摘要由CSDN通过智能技术生成

1. 相机标定原理

在图像测量过程以及机器视觉应用中,为确定空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系,必须建立相机成像的几何模型,这些几何模型参数就是相机参数。在大多数条件下这些参数必须通过实验与计算才能得到,这个求解参数的过程就称之为相机标定(或摄像机标定)。无论是在图像测量或者机器视觉应用中,相机参数的标定都是非常关键的环节,其标定结果的精度及算法的稳定性直接影响相机工作产生结果的准确性。因此,做好相机标定是做好后续工作的前提,提高标定精度是科研工作的重点所在。

1.1 三种坐标系

坐标系转换就是为了将空间的三维世界坐标系转换至图像处理的二维像素坐标系。

世界坐标系(world coordinate system):用户定义的三维世界的坐标系,为了描述目标物在真实世界里的位置而被引入。单位为m。

相机坐标系(camera coordinate system):在相机上建立的坐标系,为了从相机的角度描述物体位置而定义,作为沟通世界坐标系和图像/像素坐标系的中间一环。单位为m。

图像坐标系(image coordinate system):为了描述成像过程中物体从相机坐标系到图像坐标系的投影透射关系而引入,方便进一步得到像素坐标系下的坐标。 单位为m。

1.2 世界坐标系转换为相机坐标系

这一步是三维点到三维点的转换,包括R,t(相机外参)等参数
在这里插入图片描述

1.3 相机坐标系转换为图像坐标系

三维点到二维点的转换,包括K(相机内参)等参数
在这里插入图片描述
在这里插入图片描述

2. 畸变参数

2.1 畸变

在几何光学和阴极射线管显示中,畸变是对直线投影的一种偏移。简单来说直线投影是场景内的一条直线投影到图片上也保持为一条直线。那畸变简单来说就是一条直线投影到图片上不能保持为一条直线了,这是一种光学畸变。畸变一般可以分为两大类,包括径向畸变和切向畸变。主要的一般径向畸变有时也会有轻微的切向畸变。

2.2 径向畸变

对某些透镜,光线在远离透镜中心的地方比靠近中心的地方更加弯曲,产生“筒形”或“鱼眼”现象,称为径向畸变。

一般来讲,成像仪中心的径向畸变为0,越向边缘移动,畸变越严重。不过径向畸变可以通过下面的泰勒级数展开式来校正:

xcorrected = x(1+k1r2+k2r4+k3r6)

ycorrected = y(1+k1r2+k2r4+k3r6)

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值