Adaboost、GBDT和XGBoost

Adaboost

AdaBoost(Adaptive Boosting自适应增强):前一个基本分类器分错的样本会得到加强,加权后的全体样本再次被用来训练下一个基本分类器。同时,在每一轮中加入一个新的弱分类器,直到达到某个预定的足够小的错误率或达到预先指定的最大迭代次数。

Adaboost 迭代算法:

  1. 初始化训练数据的权值分布。如果有N个样本,则每一个训练样本最开始时都被赋予相同的权值:1/N。
  2. 训练弱分类器。具体训练过程中,如果某个样本点已经被准确地分类,那么在构造下一个训练集中,它的权值就被降低;相反,如果某个样本点没有被准确地分类,那么它的权值就得到提高。然后,权值更新过的样本集被用于训练下一个分类器,整个训练过程如此迭代地进行下去。
  3. 将各个训练得到的弱分类器组合成强分类器。各个弱分类器的训练过程结束后,加大分类误差率小的弱分类器的权重,使其在最终的分类函数中起着较大的决定作用,而降低分类误差率大的弱分类器的权重,使其在最终的分类函数中起着较小的决定作用。换言之,误差率低的弱分类器在最终分类器中占的权重较大,否则较小。

Boosting

GBDT

给定样本集: ( x 1 , y 1 ) … ( x n , y n ) \left(x_{1}, y_{1}\right) \ldots\left(x_{n}, y_{n}\right) (x1,y1)(xn,yn)

损失函数: L ( y , f ( x ) ) L(y, f(x)) L(y,f(x))

树模型: T ( x ; Θ ) T(x ; \Theta) T(x;Θ)

目的:使用多个弱分类器构建出一个强分类器,来预测样本。

第一步:初始化 f ( x ) f(x) f(x),先找到最合适的参数 Θ 1 \Theta_{1} Θ1, 使得 ∑ i = 1 n L ( y i , T ( x i ; Θ 1 ) ) \sum_{i=1}^{n} L\left(y_{i}, T\left(x_{i} ; \Theta_{1}\right)\right) i=1nL(yi,T(xi;Θ1))最小,模型初始化, f ( x ) = T ( x ; Θ 1 ) f(x)=T\left(x ; \Theta_{1}\right) f(x)=T(x;Θ1);

第二步:使用负梯度来代替残差,(其实有些人会说,GBDT本质上拟合的就是负梯度,而不是残差,只是均方误差比较凑巧,负梯度刚好等于残差)
(1)当在回归中使用均方误差 L ( y , f ( x ) ) = 1 2 ( y − f ( x ) ) 2 L(y, f(\boldsymbol{x}))=\frac{1}{2}(y-f(\boldsymbol{x}))^{2} L(y,f(x))=21(yf(x))2作为损失函数时,负梯度就是残差 ∂ J ∂ f ( x i ) = ∂ ∑ i = 1 N L ( y i , f ( x i ) ) ∂ f ( x i ) = ∂ L ( y i , f ( x i ) ) ∂ f ( x i ) = f ( x i ) − y i \frac{\partial J}{\partial f\left(\boldsymbol{x}_{i}\right)}=\frac{\partial \sum_{i=1}^{N} L\left(y_{i}, f\left(\boldsymbol{x}_{i}\right)\right)}{\partial f\left(\boldsymbol{x}_{i}\right)}=\frac{\partial L\left(y_{i}, f\left(\boldsymbol{x}_{i}\right)\right)}{\partial f\left(\boldsymbol{x}_{i}\right)}=f\left(\boldsymbol{x}_{i}\right)-y_{i} f(xi)J=f(xi)i=1NL(yi,f(xi))=f(xi)L(yi,f(xi))=f(xi)yi
可见,负梯度就是残差
y i − f ( x i ) = − ∂ J ∂ f ( x i ) y_{i}-f\left(\boldsymbol{x}_{i}\right)=-\frac{\partial J}{\partial f\left(\boldsymbol{x}_{i}\right)} yif(xi)=f(xi)J
(2)而使用别的损失函数时,
r m , i = − [ ∂ L ( y i , f ( x i ) ) ∂ f ( x ) ] f ( x ) = f m − 1 ( x ) , i = 1 , 2 , ⋯   , N r_{m, i}=-\left[\frac{\partial L\left(y_{i}, f\left(\boldsymbol{x}_{i}\right)\right)}{\partial f(\boldsymbol{x})}\right]_{f(\boldsymbol{x})=f_{m-1}(\boldsymbol{x})}, \quad i=1,2, \cdots, N rm,i=[f(x)L(yi,f(xi))]f(x)=fm1(x),i=1,2,,N
第三步:
f m ( x ) = f m − 1 ( x ) − ρ m [ ∂ J ( f ) ∂ f ( x ) ] f ( x ) = f m − 1 ( x ) = f m − 1 ( x ) + ρ m ( − [ ∂ J ( f ) ∂ F ( x ) ] f ( x ) = f m − 1 ( x ) ) \begin{aligned} f_{m}(\boldsymbol{x}) &=f_{m-1}(\boldsymbol{x})-\rho_{m}\left[\frac{\partial J(f)}{\partial f(\boldsymbol{x})}\right]_{f(\boldsymbol{x})=f_{m-1}(\boldsymbol{x})} \\ &=f_{m-1}(\boldsymbol{x})+\rho_{m}\left(-\left[\frac{\partial J(f)}{\partial F(\boldsymbol{x})}\right]_{f(\boldsymbol{x})=f_{m-1}(\boldsymbol{x})}\right) \end{aligned} fm(x)=fm1(x)ρm[f(x)J(f)]f(x)=fm1(x)=fm1(x)+ρm([F(x)J(f)]f(x)=fm1(x))
最终的模型是由前 m − 1 m-1 m1个弱分类器,以及最后一个分类器 集合而成。

XGBoost

在这里插入图片描述在这里插入图片描述在这里插入图片描述

### 回答1: AdaboostGBDTXGBoost和LightGBM都是机器学习中常用的集成学习算法。 Adaboost是一种迭代算法,通过不断调整样本权重和分类器权重,逐步提高分类器的准确率。 GBDT(Gradient Boosting Decision Tree)是一种基于决策树的集成学习算法,通过不断迭代,每次训练一个新的决策树来纠正前面树的错误,最终得到一个强分类器。 XGBoost是一种基于GBDT的算法,它在GBDT的基础上引入了正则化和并行化等技术,使得模型更加准确和高效。 LightGBM是一种基于GBDT的算法,它采用了基于直方图的决策树算法和互斥特征捆绑技术,使得模型训练速度更快,占用内存更少,同时也具有较高的准确率。 ### 回答2: adaboost(Adaptive Boosting) 是一种基于不同权重的弱分类器的算法,它通过迭代的方式来逐步提高分类器的准确性。在每轮迭代中,它会调整训练样本的权重,使得前一轮分类错误的样本在当前轮得到更多的关注。最终,通过组合这些弱分类器来构建一个强分类器。其优点在于不易过拟合,但需要耗费大量的时间来训练和预测。 gbdt(Gradient Boosting Decision Tree) 是一种基于决策树的集成学习算法,它通过迭代的方式来提升分类器的准确性。基于训练样本和实际输出的误差进行梯度下降,将它们作为下一个分类器的训练数据。每个分类器都在之前所有分类器得到的残差的基础上进行训练,并且将它们组合成一个最终的分类器。在训练过程中,为了避免过拟合,可以限制决策树的深度等参数,并采用交叉验证等技术。gbdt可以处理缺失数据、不平衡分类和高维度数据等问题,但需要注意过拟合的问题。 xgboost(Extreme Gradient Boosting) 是一种基于决策树的集成学习算法,它在gbdt的基础上引入了正则化项和精细的特征选择,进一步提高了分类器的准确性和效率。通过Hessian矩阵对损失函数进行二阶泰勒展开,引入正则化约束,可以优化损失函数,并通过交叉验证等技术选择最优的超参数。xgboost还支持GPU加速,提高模型训练的速度和效率,但需要更多的计算资源。xgboost在分类、回归和排名任务中表现优异,但需要注意过拟合和计算量的问题。 lightgbm是微软旗下一款高效、快速、分布式的梯度提升框架,也是一种基于决策树的集成学习算法,定位在处理高维度数据和大规模数据集上。lightgbm采用了GOSS(Gradient-based One-Side Sampling)技术和EFB(Exclusive Feature Bundling)技术对数据进行处理,大大减少数据的内存占用和训练时间。同时,还支持并行计算和GPU加速,提高了模型的速度和效率。lightgbm在排序、分类、回归等任务中表现出色,只是对离群值敏感,需要对数据进行预处理。 ### 回答3: Adaboost,Gradient Boosting Decision Tree (GBDT),XGBoost和LightGBM都是常见的集成学习算法,它们用于提高模型在复杂数据集上的准确度,并处理复杂数据集上遇到的问题。 Adaboost是一种迭代算法,每次迭代它使用提高错误分类样本的加权值,并降低正确分类样本的加权值,以便让前一个弱分类器无法捕捉并由后续分类器学习。Adaboost弱分类器快速训练和预测,且不需要太多超参数调整,但是它倾向于过度拟合数据,并且实力可能不足以解决大型数据集的问题。 GBDT使用决策树作为弱分类器,将每一棵树的预测结果作为下一棵树的预测输入,最后对所有树的预测结果进行加权求和。GBDT可以很好地处理线性和非线性问题,但是它倾向于过度拟合数据,需要进行精细调整参数,并且需要较长时间的训练时间。 XGBoost结合了GBDT的优势和树的强大性质。它采用了一些优秀的技术,如Boosting树算法,Shrinkage,Column Sampling和Pruning Nodes,以提高模型的性能和降低过拟合风险。XGBoost可以处理大规模数据集和高维数据集,并且速度较快,但需要的资源较多,如内存、计算能力和高质量的数据集。 LightGBM是XGBoost的新一代版本,采用了GOI(Gradient-based One-side Sampling)算法和Histogram-based Gradient Boosting方法来加快训练速度和降低内存占用。GOI算法通过对数据进行一侧采样来提高训练速度,而直方图梯度提升方法将节点分裂建模为一个直方图分桶过程,以减少节点分裂的计算成本。LightGBM对大数据集的处理能力很强,速度相对较快,但对于处理小数据集的效果可能不明显。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值