题目:Object Detection With Deep Learning: A Review
作者:Zhong-Qiu Zhao、 Peng Zheng、Shou-Tao Xu, and Xindong Wu
Motivation:
作者想写一篇综述
Methods:
作者介绍了传统目标检测的三步:感兴趣区域提取、特征提取、分类
作者又说了目标检测的领域划分,然后分别作详细介绍。

然后作者分析了神经网络算法的历史,及结构和优点。
Generic Object Detction:
其又分为基于推荐感兴趣框的目标检测(双阶段目标检测)和基于回归分类的目标检测(单阶段目标检测)
其中双阶段目标检测网络有 R-CNN、spatial pyramid pooling (SPP)-net , Fast R-CNN ,Faster R-CNN, region-based fully convolutional network(R-FCN) , feature yramid networks (FPN), Mask R-CNN,SPP-net modifies R-CNN with an SPP layer等。
其中单阶段目标检测网络有:MultiBox, AttentionNet , G-CNN, YOLO ,Single Shot MultiBox Detector (SSD) , YOLOv2 ,deconvolutional single shot detector (DSSD) , and deepl
本文回顾了深度学习在目标检测领域的应用,从传统的三步检测方法到现代的神经网络算法。作者详细探讨了双阶段检测器如R-CNN系列和单阶段检测器如YOLO、SSD。文章强调了SPP-Net解决形变问题,Fast R-CNN的效率提升以及Faster R-CNN引入的RPN网络。尽管只重点介绍了部分关键网络,但提供了该领域的深入理解。
最低0.47元/天 解锁文章
1801

被折叠的 条评论
为什么被折叠?



