题目:Swin Transformer V2: Scaling Up Capacity and Resolution
motivation:作者提出了将Swin Transformer缩放到30亿个参数的技术 ,并使其能够使用高达1536×1536分辨率的图像进行训练。作者要做大做强。
method:

首先,对大型视觉模型的实验揭示了训练中的不稳定性问题。
-
作者发现,在大型模型中,各层之间的激活幅度差异显著增大。仔细观察结构可以发现,这是由直接添加回主分支的残差单元的输出引起的。结果是激活值逐层累积,因此深层的振幅明显大于早期层的振幅。为了解决这个问题,作者提出了一种新的归一化配置,称为post norm,它将LN层从每个残差单元的开始移动到后端.
-
作者发现,这种新的配置在网络层上产生了更温和的激活值。作者还提出了一种**缩放余弦注意(scaled cosine attention)**来取代以前的点积注意(dot product attention) 。缩放余弦注意使得计算与块输入的振幅无关,并且注意值不太可能陷入极端。在本文的实验中,提出的两种技术不仅使训练过程更加稳定,而且提高了精度,特别是对于较大的模型。

其次,
本文介绍了Swin Transformer V2的改进,包括解决大型视觉模型训练不稳定性问题的post norm和缩放余弦注意技术,以及提高高分辨率输入处理效率的对数间隔连续位置偏差。此外,还讨论了如何通过zero optimizer、activation check pointing等方法降低GPU显存消耗。
最低0.47元/天 解锁文章
3657

被折叠的 条评论
为什么被折叠?



