题目:Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization Uncertainty
作者:Jiwoong Choi , Dayoung Chun, Hyun Kim , Hyuk-Jae Lee
Motivation:
作者认为在常规的single stage目标检测网络中,分数和边框都是单独回归的,而回规的边框不确定性是没有判断的,因此引入了对边框的不确定性分数,最后在yolov3的分数基础上乘以(1-不确定性分数),得到总分。其次,采用了高斯模型来回规边框。
Method:
采用高斯模型:
P
(
y
∣
x
)
=
N
(
y
∣
μ
(
x
)
,
∑
(
x
)
)
P(y|x) = N(y|\mu(x),\sum(x))
P(y∣x)=N(y∣μ(x),∑(x))
因此box的预测输出变为:



边框的输出部份变为:

其中,
μ
(
)
\mu()
μ()为边框的坐标,
∑
为各坐标的不确定性
\sum为各坐标的不确定性
∑为各坐标的不确定性
推出损失函数:

其中,
r
i
j
k
r_{ijk}
rijk为是否是最合适的anchor.是为1,否为0。
最终的评分为三部份的乘积:

不过作者似乎没有说明uncertanty_over具体是怎么求。
add:uncertanty_over是

的均值。
experiment:
不多说直接上图:


不过也很遗憾作者没有对比当前其它state of art 的网络。。。。。、
完结
本文介绍了Gaussian YOLOv3,一种结合定位不确定性提升目标检测精度和速度的方法。作者通过引入高斯模型来估计边框不确定性,并将不确定性分数与常规YOLOv3的得分相结合,改进了目标检测的评分机制。实验结果显示了该方法的有效性,但未与其他最先进的网络进行直接比较。
8438

被折叠的 条评论
为什么被折叠?



