题目: YOLOX: Exceeding YOLO Series in 2021
作者: Zheng Ge Songtao Liu Feng Wang Zeming Li Jian Sun
motivation:
作者想把yolo检测器改为anchor-freee的方发进行目标检测。
method:
先上张厉害的图:力压efficientdet.

训练细节:
Baseline:YOLOv3
300epoch的训练长度,其中,前5个epoch使用warmup学习率策略;
优化器使用标配的SGD;
学习率:其中初始学习率 0.01。使用余弦学习率策略;
batch size为128,使用8块GPU
多尺度训练:448-832,不再是以往的320-608了。这应该是追求large input size的涨点。
Backbone就是v3所使用的DarkNet-53。
预测部分加入了IoU-aware分支,这一点应该是和PP-YOLO是对齐的
损失函数:obj分支和cls分支还是使用BCE,reg分支则使用IoU loss;
使用EMA训练技巧;
数据增强仅使用RandomHorizontalFlip、ColorJitter以及多尺度训练,不使用randomResizedCrop,作者认为RandomResizedC
YOLOX是针对YOLO系列的改进,作者通过移除anchor box,采用多尺度训练,引入IoU-aware分支和Decoupled Head等方法提升性能。实验中,他们使用了SGD优化器,余弦学习率策略,以及特殊的正样本策略simOTA,以提高训练效率和检测精度。
最低0.47元/天 解锁文章
1872

被折叠的 条评论
为什么被折叠?



