高数第七版_习题解答_极限练习解答(第二类重要极限的多元形式)

练习1: 求极限
lim ⁡ x → 0 ( a 1 x + a 2 x + ⋯ + a n x n ) 1 x \lim_{x \rightarrow 0} \left(\frac{a_1^{x}+a_2^{x}+\dots+a_n^{x}}{n}\right)^\frac{1}{x} x0lim(na1x+a2x++anx)x1
分析:

(1) 利用公式
lim ⁡ ( 1 + u ) v = e lim ⁡ v ⋅ ( 1 + u ) = e lim ⁡ u ⋅ v , ( u → 0 , v → + ∞ ) (1) \lim(1+u)^v = e^{\lim v \cdot(1+u)}= e^{\lim u\cdot v},(u\rightarrow 0,v\rightarrow +\infty) { \color{red}\tag{1}} lim(1+u)v=elimv(1+u)=elimuv,(u0,v+)(1)
(2) 与习题1-10,9-(5)类似,构造函数 u u u,此时注意到

( a 1 x + a 2 x + ⋯ + a n x n ) = ( 1 + a 1 x + a 2 x + ⋯ + a n x − n n ) = ( 1 + ( a 1 x − 1 ) + ( a 2 x − 1 ) + ⋯ + ( a n x − 1 ) n ) \left(\frac{a_1^{x}+a_2^{x}+\dots+a_n^{x}}{n}\right)=\left(1+\frac{a_1^{x}+a_2^{x}+\dots+a_n^{x}-n}{n}\right) = \left(1+\frac{(a_1^{x}-1)+(a_2^{x}-1)+\dots+(a_n^{x}-1)}{n}\right) (na1x+a2x++anx)=(1+na1x+a2x++anxn)=(1+n(a1x1)+(a2x1)++(anx1))

此时, u = ( a 1 x − 1 ) + ( a 2 x − 1 ) + ⋯ + ( a n x − 1 ) n u=\frac{(a_1^{x}-1)+(a_2^{x}-1)+\dots+(a_n^{x}-1)}{n} u=n(a1x1)+(a2x1)++(anx1)即是需要构造出的函数

再利用等价无穷小的结论 a x − 1 ∼ x ln ⁡ a a^x-1 \sim x\ln a ax1xlna即可求解。

练习2: 求极限 lim ⁡ x → π 2 ( sin ⁡ x ) tan ⁡ x \lim_{x \rightarrow \frac{\pi}{2}} (\sin x)^{\tan x} limx2π(sinx)tanx

分析:

(1)一般习惯考虑 x → 0 x \rightarrow 0 x0的情形,于是记 y = x − π 2 y = x-\frac{\pi}{2} y=x2π, x = y + π 2 x = y+ \frac{\pi}{2} x=y+2π

此时: sin ⁡ x = sin ⁡ ( y + π 2 ) = − cos ⁡ y \sin x = \sin (y+\frac{\pi}{2}) = -\cos y sinx=sin(y+2π)=cosy, tan ⁡ x = tan ⁡ ( y + π 2 ) = − cot ⁡ y \tan x = \tan(y+\frac{\pi}{2}) = -\cot y tanx=tan(y+2π)=coty

注意到: x → π 2 x \rightarrow \frac{\pi}{2} x2π y → 0 y \rightarrow 0 y0

(2)类似练习1,同样构造出公式中的u,类似可得出答案。

解:

lim ⁡ x → π 2 ( sin ⁡ x ) tan ⁡ x = lim ⁡ y → 0 ( − cos ⁡ y ) − cot ⁡ y = lim ⁡ y → 0 [ 1 − ( cos ⁡ y − 1 ) ] − cot ⁡ y \lim_{x \rightarrow \frac{\pi}{2}} (\sin x)^{\tan x}=\lim_{y \rightarrow0} (-\cos y)^{-\cot y} = {\color{red} \lim_{y \rightarrow0} [1-(\cos y-1)]^{-\cot y}} x2πlim(sinx)tanx=y0lim(cosy)coty=y0lim[1(cosy1)]coty
u = − ( cos ⁡ y − 1 ) = 1 − cos ⁡ y u = {\color{red}-(\cos y - 1)} = 1 - \cos y u=(cosy1)=1cosy , v = − cot ⁡ y v = -\cot y v=coty , 再利用公式 (1)
lim ⁡ y → 0 [ 1 − ( cos ⁡ y − 1 ) ] − cot ⁡ y = lim ⁡ y → 0 e ( cos ⁡ y − 1 ) ∗ ( − cot ⁡ y ) = lim ⁡ y → 0 e ( 1 − cos ⁡ y ) cot ⁡ y = lim ⁡ y → 0 e ( 1 − cos ⁡ y ) cos ⁡ y tan ⁡ y \begin{aligned} \lim_{y \rightarrow0} [1-(\cos y-1)]^{-\cot y} &= \lim_{y \rightarrow0} e^{(\cos y-1)*(-\cot y)} \\ &= \lim_{y \rightarrow0} e^{(1-\cos y)\cot y} \\ & = \lim_{y \rightarrow0} e^{\frac{(1-\cos y)\cos y}{\tan y}} \end{aligned} y0lim[1(cosy1)]coty=y0lime(cosy1)(coty)=y0lime(1cosy)coty=y0limetany(1cosy)cosy
再考虑: 1 − cos ⁡ y ∼ y 2 2 1-\cos y \sim \frac{y^2}{2} 1cosy2y2, cos ⁡ y → 1 \cos y \rightarrow 1 cosy1
lim ⁡ y → 0 e ( 1 − cos ⁡ y ) cos ⁡ y tan ⁡ y = lim ⁡ y → 0 e y 2 2 y = e lim ⁡ y → 0 y 2 2 y = e 0 = 1 \lim_{y \rightarrow0} e^{\frac{(1-\cos y)\cos y}{\tan y}}=\lim_{y \rightarrow0} e^{\frac{y^2}{2y}}=e^{\lim_{y \rightarrow0} \frac{y^2}{2y} }=e^0=1 y0limetany(1cosy)cosy=y0lime2yy2=elimy02yy2=e0=1

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

半个冯博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值