目录索引
生成式对抗网络(Generative Adversarial Networks, GAN )是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。由 Ian Goodfellow 首先提出,在这两年更是深度学习中最热门的东西,仿佛什么东西都能由 GAN 做出来。
本文列出了 10 篇关于 GAN 的论文,这些论文详细介绍了 GAN,以及最新的方法。
一、DCGAN
论文链接“Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”
code:https://github.com/jazzsaxmafia/dcgan_tensorflow
DCGAN 开启 GAN 之旅。这篇论文展示了卷积层与 GAN 是怎样组合的,还提供了其他一系列其他的参考架构。论文还讨论了诸如可视化GAN特征,潜在空间插值,用鉴别器特征训练分类器,结果评价等方面。总之,DCGAN 论文是必读的 GAN 论文,因为它的结构非常清晰,代码容易使用,可以马上用在您的 GAN 开发中。
二、Improved Techniques for Training GANs
这篇论文提供了一系列的建议,用来建立DCGAN论文中提出的网络结构。这篇论文会帮助您理解GAN不稳定性的最佳假设。此外,本文还提出了许多稳定DCGAN训练的其他技术,包括特征匹配,小批量识别,历史平均,单面标