生成式对抗网络GAN必读十篇论文(附论文和代码地址)

生成式对抗网络(Generative Adversarial Networks, GAN )是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。由 Ian Goodfellow 首先提出,在这两年更是深度学习中最热门的东西,仿佛什么东西都能由 GAN 做出来。
本文列出了 10 篇关于 GAN 的论文,这些论文详细介绍了 GAN,以及最新的方法。

一、DCGAN

论文链接“Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”
code:https://github.com/jazzsaxmafia/dcgan_tensorflow
在这里插入图片描述
DCGAN 开启 GAN 之旅。这篇论文展示了卷积层GAN 是怎样组合的,还提供了其他一系列其他的参考架构。论文还讨论了诸如可视化GAN特征,潜在空间插值,用鉴别器特征训练分类器,结果评价等方面。总之,DCGAN 论文是必读的 GAN 论文,因为它的结构非常清晰,代码容易使用,可以马上用在您的 GAN 开发中。

二、Improved Techniques for Training GANs

论文链接
code链接

这篇论文提供了一系列的建议,用来建立DCGAN论文中提出的网络结构。这篇论文会帮助您理解GAN不稳定性的最佳假设。此外,本文还提出了许多稳定DCGAN训练的其他技术,包括特征匹配,小批量识别,历史平均,单面标

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值