文章目录
- 隐表达
- 相关论文
-
- 1. NIPS2016:Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
- 2. ICML2018:Learning Representations and Generative Models for 3D Point Clouds
- 3. CVPR2019:Learning Implicit Fields for Generative Shape Modeling
- 4. CVPR2020:Points2Surf: Learning Implicit Surfaces from Point Cloud Patches
- 5. CVPR2020:Neural Implicit Embedding for Point Cloud Analysis
清库存系列,之前一直想写一下,可还没有非常仔细去阅读,就先列表在这里。后面有时间了再细解每一篇论文吧。
隐表达
隐表达到底在做一件什么事情?
列个表看一下3D表达形式哈:
所以如图很清楚的解释了隐表达,是把3D形状转换成了决策面来学习。
简单来说呢,就是,我认为3D表面,也就是上面图里兔子表面为0,里面或外面是-1或1,那么我只需要学习这个超平面,也就是这个3D表面即可。问题一下子就简单了好多。因为最终只需要预测空间中的这个点是0、-1、还是1。
画个图如下,意思就是隐表达学习的就是黑线y函数的这个部分,也就是3D空间的那个面。红色方框和绿色圈就是-1和 1的情况,不属于表面。
相关论文
1. NIPS2016:Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
概要
-
提出了3D-GAN,从概率隐空间空间生成三维对象;即:
-
探索了隐空间表达,其实只是探索了隐空间特征组合情况
其中整体架构如下所示:
-
单个