文章目录
1.多特征量的线性回归
开始讨论一种新的线性回归的版本,这种形式适用于多个变量或者多特征量的情况。
假设我们不仅有房屋面积作为预测房屋价格的一种特征或者变量,我们还知道卧室的数量,楼层的数量以及房子的年龄,我们有了更多可以用来预测价格的信息。
hθ(x) = θ0 + θ1 x1 + θ2 x2 + … + θn xn
现在设置一个x0 = 1,这意味着第i个样本都有一个向量x(i),并且x(i)0等于1。可以认为额外定义第0个特征向量,并且它的取值总是1,现在的特征向量x是一个从0开始标记的n+1维向量[x0,x1,x2,…,xn]。将参数都看做一个向量,所以参数是向量[θ0 , θ1 , θ2 ,… ,θn ],如图2。假设函数可以写成:
hθ(x) = θ0 x0+ θ1 x1 + θ2 x2 + … + θn xn = θTx
其中θ0 = 1。
2.多元梯度下降法
回顾一下当n=1时的线性线性回归梯度下降:线性回归的梯度下降
- 当n = 1时的梯度下降
- 当n>=1时的梯度下降