吴恩达机器学习(八)多元梯度下降

1.多特征量的线性回归

开始讨论一种新的线性回归的版本,这种形式适用于多个变量或者多特征量的情况。
假设我们不仅有房屋面积作为预测房屋价格的一种特征或者变量,我们还知道卧室的数量,楼层的数量以及房子的年龄,我们有了更多可以用来预测价格的信息。
在这里插入图片描述

图1:考虑多变量来预测房屋价格
线性回归的假设变为:

hθ(x) = θ0 + θ1 x1 + θ2 x2 + … + θn xn
现在设置一个x0 = 1,这意味着第i个样本都有一个向量x(i),并且x(i)0等于1。可以认为额外定义第0个特征向量,并且它的取值总是1,现在的特征向量x是一个从0开始标记的n+1维向量[x0,x1,x2,…,xn]。将参数都看做一个向量,所以参数是向量[θ0 , θ1 , θ2 ,… ,θn ],如图2。假设函数可以写成:
hθ(x) = θ0 x0+ θ1 x1 + θ2 x2 + … + θn xn = θTx
其中θ0 = 1。
在这里插入图片描述

图2:多维变量的假设函数

2.多元梯度下降法

回顾一下当n=1时的线性线性回归梯度下降:线性回归的梯度下降

  • 当n = 1时的梯度下降
    在这里插入图片描述
一维线性回归梯度下降
  • 当n>=1时的梯度下降
    在这里插入图片描述
多维线性回归梯度下降
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值