知识图谱-第三方工具:DeepKE【支持低资源、长篇章的知识抽取工具,支持:①命名实体识 别、②关系抽取、③属性抽取】【基于PyTorch+Transformers】

DeepKE是一个基于PyTorch和Transformers的开源工具,专注于低资源、长篇章的知识抽取,包括命名实体识别、关系抽取和属性抽取。它提供了一个统一的框架,适用于全监督、低资源和文档级关系抽取任务,具备Data、Model和Core三个组成部分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
DeepKE 是一个基于深度学习的开源中文知识图谱抽取框架,支持低资源、长篇章的知识抽取工具,支持命名实体识别、关系抽取和属性抽取功能。
在这里插入图片描述

  • DeepKE为三个知识抽取功能(命名实体识别、关系抽取和属性抽取)设计了一个统一的框架
  • 可以在不同场景下实现不同功能。比如,可以在标准全监督、低资源少样本和文档级设定下进行关系抽取
  • 每一个应用场景由三个部分组成:Data部分包含Tokenizer、Preprocessor和Loader,Model部分包含Module、Encoder和Forwarder,Core部分包含Training、Evaluation和Prediction



参考资料:
DeepKE:GitHub源码

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值