Python 数字图像处理之通道叠加(一)

9 篇文章 43 订阅 ¥29.90 ¥99.00
本文探讨了在深度学习背景下,通道叠加的概念,澄清了它与传统图像处理中通道和波段的区别。通过实例展示了如何将两幅3通道的影像合并成1个6通道的影像,并提供了实现这一过程的Python代码,借助yimage库完成,该库提供比opencv更强大的数据支持。
摘要由CSDN通过智能技术生成

一、介绍

博主之前在用深度学习做变化检测时,看到有些文献中的通道叠加是将两幅影像合并为一幅影像,即两幅三通道的影像叠加为一幅6通道的影像,但有些文章中又将这种通道叠加描述为波段叠加,因此给本人带来了极大的困惑,图像中通道和波段应该是不同的东西才对啊?
后来发现;此处的通道是其在深度学习中含义,一幅影像波段有多少就可以有几个通道,而不再是图像中的RGB通道与透明度通道。

二、成果展示

效果图下图所示:
在这里插入图片描述 上图是将一幅2010年的前期影像(tif格式),一幅2011年的后期影像(tif格式),合并为一幅具有6个波段的影像(tif格式)。

三、代码

import cv2
import numpy 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

自动驾驶探索站

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值